首页|基于粒子群优化BP神经网络的中空夹层钢管混凝土柱轴压承载力研究

基于粒子群优化BP神经网络的中空夹层钢管混凝土柱轴压承载力研究

扫码查看
圆中空夹层钢管混凝土(concrete filled double-skin steel tube,CFDST)柱因其独特的结构形式与优异的力学性能,已成为现代工程结构中的主要受力构件.然而外钢管、内钢管与核心混凝土之间的相互约束作用导致其受力比较复杂.为此,采用PSO-BP混合神经网络算法对圆CFDST柱的轴压承载力进行了研究.收集了167组数据建立数据库,并选取8种影响因素作为输入层参数,轴压承载力作为输出层参数,分析了传统BP神经网络模型所存在的缺陷,建立了PSO-BP神经网络模型.此外,将机器学习模型与3种规范的结果进行比较,结果表明机器学习模型的精度比3种规范的精度更高.相较于BP神经网络模型,PSO-BP神经网络模型具有更好的预测能力,更有助于预测CFDST柱的轴压承载力,对工程上研究CFDST柱的力学性能有着重要意义.
Study on Axial Compressive Load Bearing Capacity of Concrete-Filled Double-Skin Steel Tubular Columns Based on Particle Swarm Optimization BP Neural Network
Circular concrete-filled double-skin steel tubular(CFDST)columns have become the main bearing components in modern engineering structures due to its unique structural form and excellent mechanical properties.However,the mutual restraining effect between the outer steel tube,inner steel tube and core concrete leads to the complexity of its stress.For this reason,in this paper,the axial compressive load bearing capacity of circular CFDST columns is investigated using PSO-BP hybrid neural network algorithm.167 sets of data were collected to establish a database,8 influencing factors were selected as input layer parameters and axial compressive load bearing capacity as output layer parameters,the defects existing in the traditional BP neural network model were analyzed,and the PSO-BP neural network model was established.In addition,the results of machine learning model is compared with that of three specifications,and the results show that the results of machine learning model has higher accuracy than that of the three specifications.Among them,the PSO-BP neural network model has better prediction ability compared with the BP neural network model,which is more helpful for predicting the axial compressive load bearing capacity of CFDST columns,which is of great significance for the engineering study of the mechanical properties of CFDST columns.

BP neural networkparticle swarm optimization algorithmconcrete-filled double-skin steel tubular columnaxial compressive load bearing capacitymachine learning model

赵均海、华林炜、王昱

展开 >

长安大学 建筑工程学院,西安 710061

BP神经网络 粒子群优化算法 中空夹层钢管混凝土柱 轴压承载力 机器学习模型

2024

建筑钢结构进展
同济大学

建筑钢结构进展

CSTPCD北大核心
影响因子:0.806
ISSN:1671-9379
年,卷(期):2024.26(9)