首页|深度学习支持的基于CBR的工程质量问题防治研究

深度学习支持的基于CBR的工程质量问题防治研究

扫码查看
针对建筑工程质量管理过程中决策效率低,大量历史案例信息未有效利用的问题,提出一种深度学习支持的基于案例推理(Case-Based Reasoning,CBR)的工程质量问题防治模型,以实现质量问题防治相关知识、经验的有效重用.收集、分析相关历史案例数据,基于正则表达式与双向编码器表示-双向长短期记忆网络-条件随机场(BERT-BiLSTM-CRF)模型抽取案例特征属性信息,提高案例库构建的自动化程度.引入BERT算法改进CBR的相似性度量,通过案例检索匹配和修改,为目标案例推荐可参考的防治方案,并结合某实际案例对该防治模型进行验证.结果表明,该防治模型可以从案例库中识别相似案例,提高质量管理决策的效率和准确性.
Deep Learning-supported Case-Based Reasoning for Prevention and Treatment of Construction Project Quality Problems
To address ineffective decision-making and utilization in the quality management process of construction projects in a large number of historical cases,a case-based reasoning(CBR)model supported by deep learning is proposed.Historical cases are collected and analyzed.Their feature attributes are extracted based on the regular expression and bidirectional encoder representations from the transformers-bidirectional long short-term memory-conditional random field(BERT-BiLSTM-CRF)model.This model can achieve a more automatic construction of the case database.The BERT algorithm is introduced to improve the similarity measure of CBR.A prevention and treatment approach is recommended for the target case through case retrieval matching and modification and is validated with a real-life case.The results show that this approach can recognize similar cases from the case database,enhancing the efficiency and accuracy of quality management decision-making.

construction project qualitydeep learningBERTcase-based reasoning

姜韶华、祁晓敏

展开 >

大连理工大学 建设管理系,辽宁 大连 116024

工程质量 深度学习 BERT 案例推理

国家自然科学基金面上项目

52078101

2024

工程管理学报
哈尔滨工业大学 中国建筑业协会管理现代化专业委员会

工程管理学报

CSTPCDCHSSCD
影响因子:1.613
ISSN:1674-8859
年,卷(期):2024.38(2)
  • 6