首页|改进的BP神经网络在精益建造体系下的施工进度预测

改进的BP神经网络在精益建造体系下的施工进度预测

扫码查看
针对基于位置管理系统(LBMS)中预测计划精细化程度低的问题,依靠和声搜索算法(HS)优化BP神经网络的权重和阈值,结合实际施工进度信息,构建了基于HS-BP神经网络的LBMS框架,对施工进度计划精准预测.并以广联达华南总部基地项目中梁板模板施工进度为例,验证了 HS-BP 神经网络的预测精度,同时绘制了梁板模板的实际计划和预测计划的流线图,说明了基于HS-BP神经网络的LBMS框架的可靠性.
Improved BP Neural Network for Construction Schedule Prediction Under Lean Construction System
To address the problem of low accuracy of construction schedule prediction in location-based management systems(LBMS),this paper adopts Harmony Search Algorithm(HS)to optimize the weights and thresholds of BP neural networks.By integrating practical construction information,an LBMS framework based on HS-BP neural networks is constructed to accurately predict the construction schedule.Finally,the prediction accuracy of HS-BP neural network is verified by taking the construction schedule of roof slab formwork of Guangzhou Guanglianda South China Headquarters Base Project as an example.The flow line of the actual and predicted schedules of the beam slab are also drawn to illustrate the reliability of the LBMS framework based on HS-BP neural network.

lean constructionlocation-based management systemBP neural networkharmony search algorithmconstruction schedule prediction

张挪威、林后来、王广兴、彭国平、王玺德、陈芝琦

展开 >

瑞森新建筑有限公司,山东 济南 250000

精益建造 基于位置管理系统 BP神经网络 和声搜索算法 预测计划

2024

工程管理学报
哈尔滨工业大学 中国建筑业协会管理现代化专业委员会

工程管理学报

CSTPCDCHSSCD
影响因子:1.613
ISSN:1674-8859
年,卷(期):2024.38(3)
  • 12