首页|基于强化学习的高层建筑施工进度-成本优化研究

基于强化学习的高层建筑施工进度-成本优化研究

扫码查看
为解决高层建筑施工进度-成本目标智能优化管控问题,提出了一种基于强化学习算法并考虑工序工期不确定性的高层建筑施工进度-成本综合优化算法框架方法,该方法融合PERT原理引入不确定性,基于Double DQN算法架构开发了进度-成本优化决策模型.并在某高层建筑工程案例项目中进行了验证和应用,经过模型优化后,案例项目工序施工总工期、总成本优化提升明显,实现了项目的降本增效,有助于施工过程科学规划决策与风险管理.这种基于强化学习所开发的优化算法框架克服了传统方法的局限性,有效提升了高层建筑施工管控的智能化水平,为科学施工管理赋能.
Construction Schedule-cost Optimization of High-rise Buildings Based on Reinforcement Learning
In order to solve the problem of intelligent optimization and control of the schedule-cost target of high-rise building construction,this paper proposed a comprehensive optimization algorithm framework method for the schedule-cost of high-rise building construction based on reinforcement learning algorithm and considering the uncertainty of process duration.This method integrated the PERT principle to introduce uncertainty,and developed a schedule-cost optimization model based on the Double DQN algorithm architecture,which has been verified and applied in a class-A public high-rise building commercial complex project.After model optimization,the total construction period and cost optimization of the project have been significantly improved,achieving cost reduction and efficiency improvement of the project,which is conductive to scientific planning,decision-making and risk management of the construction process.The optimization algorithm framework developed by this study based on reinforcement learning overcomes the limitations of traditional methods,enhancing the intelligent level of high-rise building construction control,and empowers scientific construction management.

reinforcement learningconstruction controlschedule-cost optimizationDouble DQNhigh-rise buildings

张立茂、崔胜博、肖仲华、黄锦庭

展开 >

华中科技大学 土木与水利工程学院,湖北 武汉 430074

湖北联投集团有限公司,湖北 武汉 430076

强化学习 施工管控 进度-成本优化 Double DQN 高层建筑

2024

工程管理学报
哈尔滨工业大学 中国建筑业协会管理现代化专业委员会

工程管理学报

CSTPCDCHSSCD
影响因子:1.613
ISSN:1674-8859
年,卷(期):2024.38(6)