首页|微调卷积神经网络在建筑外立面裂缝检测中的应用研究

微调卷积神经网络在建筑外立面裂缝检测中的应用研究

扫码查看
深度学习技术用于建筑外立面裂缝检测,具有效率高、客观性强的特点,但建筑外立面背景的多样性导致使用大量样本堆砌训练的时间较长,难以取得良好的识别效果.为提高检测的查准率、查全率与训练效率,提出了基于迁移学习的微调训练方法:使用大量来自其他建筑的已有样本进行预训练之后,使用来自待检测建筑的少量样本进行微调训练;然后,使用微调训练后的模型对待检测建筑的其他部分进行检测.通过对比不同训练方法的测试结果与训练时间,证明了微调卷积神经网络在建筑外立面裂缝检测中的优越性,并研究了冻结层数对微调训练模型的影响.
Study on application of fine-tuning convolutional neural network in crack detection of building facade
The application of deep learning to the building facade crack detection has the advantage of high efficiency and superior objectivity.However,the diversity of building facade makes it time-consuming to simply use a massive sample set to train the model and difficult to reach a satisfying recognition.In order to improve the precision,recall and training efficiency,a fine-tuning training method based on transfer learning was proposed.After using a large sample set from other buildings for pre-training,fine-tuning training with a small amount of sample from the building under detection was conducted,and then the fine-tuned model was used to detect other parts of the building.Through the comparison of the test results and training time-consumption,the superiority of applying fine-tuning convolutional neural network to building facade crack detection was proved,the influence of frozen layers on fine-tuning model was studied.

deep learningfine-tuned convolutional neural networkbuilding facadecrack detectiontraining sample

赵宇翔、王卓琳、王易豪、陈玲珠、刘辉

展开 >

上海市建筑科学研究院有限公司 上海市工程结构安全重点实验室,上海 200032

深度学习 微调卷积神经网络 建筑外立面 裂缝检测 训练样本

上海建科集团股份有限公司科研创新项目上海市2021年度"科技创新行动计划"优秀技术带头人计划项目

KY10000038.2020003821XD1434100

2024

建筑结构
中国建筑设计研究院 亚太建设科技信息研究院 中国土木工程学会

建筑结构

CSTPCD北大核心
影响因子:0.723
ISSN:1002-848X
年,卷(期):2024.54(3)
  • 1
  • 8