首页|微调卷积神经网络在建筑外立面裂缝检测中的应用研究

微调卷积神经网络在建筑外立面裂缝检测中的应用研究

Study on application of fine-tuning convolutional neural network in crack detection of building facade

扫码查看
深度学习技术用于建筑外立面裂缝检测,具有效率高、客观性强的特点,但建筑外立面背景的多样性导致使用大量样本堆砌训练的时间较长,难以取得良好的识别效果.为提高检测的查准率、查全率与训练效率,提出了基于迁移学习的微调训练方法:使用大量来自其他建筑的已有样本进行预训练之后,使用来自待检测建筑的少量样本进行微调训练;然后,使用微调训练后的模型对待检测建筑的其他部分进行检测.通过对比不同训练方法的测试结果与训练时间,证明了微调卷积神经网络在建筑外立面裂缝检测中的优越性,并研究了冻结层数对微调训练模型的影响.
The application of deep learning to the building facade crack detection has the advantage of high efficiency and superior objectivity.However,the diversity of building facade makes it time-consuming to simply use a massive sample set to train the model and difficult to reach a satisfying recognition.In order to improve the precision,recall and training efficiency,a fine-tuning training method based on transfer learning was proposed.After using a large sample set from other buildings for pre-training,fine-tuning training with a small amount of sample from the building under detection was conducted,and then the fine-tuned model was used to detect other parts of the building.Through the comparison of the test results and training time-consumption,the superiority of applying fine-tuning convolutional neural network to building facade crack detection was proved,the influence of frozen layers on fine-tuning model was studied.

deep learningfine-tuned convolutional neural networkbuilding facadecrack detectiontraining sample

赵宇翔、王卓琳、王易豪、陈玲珠、刘辉

展开 >

上海市建筑科学研究院有限公司 上海市工程结构安全重点实验室,上海 200032

深度学习 微调卷积神经网络 建筑外立面 裂缝检测 训练样本

上海建科集团股份有限公司科研创新项目上海市2021年度"科技创新行动计划"优秀技术带头人计划项目

KY10000038.2020003821XD1434100

2024

建筑结构
中国建筑设计研究院 亚太建设科技信息研究院 中国土木工程学会

建筑结构

CSTPCD北大核心
影响因子:0.723
ISSN:1002-848X
年,卷(期):2024.54(3)
  • 1
  • 8