首页|面向数值模拟的砖砌体单轴受压本构关系模型研究

面向数值模拟的砖砌体单轴受压本构关系模型研究

扫码查看
在现有的砖砌体单轴受压本构关系模型中,弹性模量和峰值应变预测精度较差,导致砖砌体的数值模拟分析难度较大.基于收集到的 145 个试件数据,对砖砌体的弹性模量、轴心抗压强度以及峰值应变取值进行分析.结果表明:现有的弹性模量计算公式不适用于过低或高弹性模量的砖砌体,弹性模量与峰值点割线模量呈倍数关系,应按照砌体的材料强度和种类进行取值;轴心抗压强度计算公式适用性较好;砖砌体的峰值应变应按照混凝土砖和非混凝土砖进行分类,非混凝土砖砌体峰值应变与砂浆强度呈非线性关系,应按照砂浆强度大小进行取值;然而混凝土砖砌体峰值应变受砂浆强度影响较小,取值在0.001 和0.002 之间.最后,提出了适用性更好的面向数值模拟的砖砌体单轴受压本构关系模型.
Research on constitutive model of brick masonry under uniaxial compression for numerical simulation
In the present constitutive model of brick masonry under uniaxial compression,the prediction of elastic modulus and peak strain is not accurate,leading to the difficult numerical simulation analysis of brick masonry.The elastic modulus,axial compressive strength and peak strain of brick masonry were analyzed based on the data of 145 specimens collected.The results show that the current calculation formula of elastic modulus is not suitable for brick masonry with low or high elastic modulus,and the elastic modulus has a multiple relationship with the secant modulus of the peak point,which is determined by strength and type of masonry materials.The calculation formula of axial compressive strength has good accuracy.The peak strain analysis of brick masonry is classified according to concrete brick and non-concrete brick.The peak strain of non-concrete brick masonry has a nonlinear relationship with the mortar strength,which should be determined by mortar strength.However,the mortar strength has little influence on the peak strain of concrete brick masonry which ranges from 0.001~0.002.Finally,a better applicable constitutive model of brick masonry under uniaxial compression for numerical simulation was proposed.

brick masonryuniaxial compressionconstitutive relationnumerical simulationelastic modulus calculation formula

程浩然、胡松涛、敬登虎

展开 >

东南大学土木工程学院,南京 211189

砖砌体 单轴受压 本构关系 数值模拟 弹性模量计算公式

国家自然科学基金

52178118

2024

建筑结构
中国建筑设计研究院 亚太建设科技信息研究院 中国土木工程学会

建筑结构

CSTPCD北大核心
影响因子:0.723
ISSN:1002-848X
年,卷(期):2024.54(8)
  • 33