首页|基于深度学习的计算机视觉在隧道衬砌病害检测中的应用综述

基于深度学习的计算机视觉在隧道衬砌病害检测中的应用综述

扫码查看
隧道衬砌作为隧道的重要支撑结构,对其中存在的病害进行检测显得十分重要.然而,传统的隧道病害检测方法高度依赖人工,效率低下,并且存在一定的安全风险,因此,如何高效、安全地实现病害的自动检测成为了热门的方向之一.深度学习(DL)和计算机视觉(CV)被视为实现隧道衬砌病害自动检测的具有发展前景的方法.为了阐明DL技术和CV技术在病害检测中的研究与应用,总结了隧道衬砌病害检测技术的发展历程;基于数据对于DL模型训练的重要性,总结了衬砌病害数据集的建立过程;随后,总结了基于DL的CV技术在隧道衬砌表面病害和内部病害检测方面的方法和应用;最后,讨论了目前研究中存在的问题,并对未来的发展进行了展望.
A review of application of deep learning-based computer vision in tunnel lining defect detection
As an important supporting structure of the tunnel,it is very important to detect the diseases existing in the tunnel lining.However,the traditional tunnel defect detection methods are highly dependent on manual work,inefficient,and have certain safety risks.Therefore,how to efficiently and safely realize the automatic detection of defects has become one of the hot directions.Deep learning(DL)and computer vision(CV)are considered as promising methods for automatic detection of tunnel lining defects.In order to clarify the research and application of DL technology and CV technology in defect detection,the development history of tunnel lining defect detection technology was summarized.Based on the importance of data for DL model training,the establishment process of lining disease data set was summarized.Then,the method and application of DL-based CV technology in the detection of surface and internal diseases of tunnel lining were summarized.Finally,the problems existing in the current research were discussed,and the future development was prospected.

tunnel engineeringtunnel liningdefect detectioncomputer visiondeep learning

张令心、王茂岑、谢贤鑫、沈俊凯、李宁

展开 >

中国地震局工程力学研究所地震工程与工程振动重点实验室,哈尔滨 150080

地震灾害防治应急管理部重点实验室,哈尔滨 150080

上海建工四建集团有限公司,上海 201103

隧道工程 隧道衬砌 病害检测 计算机视觉 深度学习

国家自然科学基金项目黑龙江省头雁行动计划

52020105002

2024

建筑结构
中国建筑设计研究院 亚太建设科技信息研究院 中国土木工程学会

建筑结构

CSTPCD北大核心
影响因子:0.723
ISSN:1002-848X
年,卷(期):2024.54(20)