首页|新拌混凝土坍落过程的智能预测方法研究

新拌混凝土坍落过程的智能预测方法研究

扫码查看
混凝土浇筑质量对复杂混凝土结构和组合结构的力学性能有重要影响,传统的研究方法通常采用足尺浇筑试验,耗时耗力.基于计算流体力学(CFD)方法、机器学习模型XGBoost和视频深度生成模型SimVP,提出了新拌混凝土坍落过程的智能预测方法.首先使用了 CFD软件模拟混凝土的坍落度试验,生成坍落过程中的速度云图,为预测模型提供数据集;随后分别构建了典型混凝土配合比(含拌和后时间)-流变参数(屈服应力和塑性粘度)、流变参数(屈服应力和塑性粘度)-坍落过程的智能预测模型.结果表明:智能预测模型能够准确预测混凝土的坍落过程,预测结果在扩展度和流速两项指标上与CFD方法的模拟结果较为一致,且预测速度相比CFD方法提升了 4~8倍.
Research on intelligent prediction method of fresh concrete slump process
The quality of concrete pouring has an important influence on the mechanical properties of complex concrete structures and composite structures.The traditional research methods usually use full-scale pouring test,which is time-consuming and labor-consuming.Based on computational fluid dynamics(CFD)method,machine learning model XGBoost and video depth generation model SimVP,an intelligent prediction method for the slump process of fresh concrete was proposed.Firstly,the slump test of concrete was simulated by CFD software,and the velocity cloud diagram in slump process was generated,which provides the data set for the prediction model.Then,intelligent prediction model of typical concrete mix ratio(including mixing time)-rheological parameters(yield stress and plastic viscosity)and rheological parameters(yield stress and plastic viscosity)-slump process were constructed respectively.The results show that the intelligent prediction model can accurately predict the slump process of concrete,and the predicted results are in good agreement with the CFD method in the two indexes of slump flow and flow velocity,and the predicted speed is 4~8 times higher than that of CFD method.

concrete pouringCFD simulationartificial intelligencevideo predictionslump of concrete

刘广鹤、王琛、丁然、唐亮、樊健生

展开 >

清华大学土木工程系,北京 100084

中建工程产业技术研究院有限公司,北京 101300

混凝土浇筑 CFD模拟 人工智能 视频预测 混凝土坍落

2024

建筑结构
中国建筑设计研究院 亚太建设科技信息研究院 中国土木工程学会

建筑结构

CSTPCD北大核心
影响因子:0.723
ISSN:1002-848X
年,卷(期):2024.54(24)