首页|基于BP神经网络的机制砂混凝土抗压强度预测

基于BP神经网络的机制砂混凝土抗压强度预测

扫码查看
机制砂混凝土强度影响因素复杂,收集国内外权威文献试验数据建立了162 组机制砂抗压强度的数据库,利用BP神经网络对机制砂混凝土抗压强度进行预测.采用多层反向传播算法对人工神经网络模型进行训练并预测,发现BP神经网络模型具有良好的预测和泛化能力,模型的预测值与实测值高度吻合;基于BP神经网络模型分析了石粉含量对机制砂混凝土不同强度等级的影响,发现石粉含量约 10%时达到最大值,预测值与实际值的误差在8%以内.深度学习方法可有效提高机制砂混凝土配合比设计的试验效率,降低材料和时间成本.
PREDICTION OF COMPRESSIVE STRENGTH OF MECHANISM SAND CONCRETE BASED ON BP NEURAL NETWORK
Mechanism sand concrete strength influence factors are complex,collect domestic and foreign authoritative literature test data to establish a database of 162 groups of mechanism sand compressive strength,using BP neural network to predict the mechanism sand concrete compressive strength.The artificial neural network model was trained and predicted using the multilayer back propagation algorithm,and it was found that the BP neural network model had good prediction and generalization ability,and the predicted value of the model was highly consistent with the measured value;the influence of stone powder content on different strength grades of machine-made sand concrete was analyzed based on the BP neural network model,and it was found that the stone powder content reached the maximum value when the content was about 10%,and the error of the predicted value and the actual value was within 8%,which was the same as the actual value.The error between the predicted value and the actual value is within 8%.The deep learning method can effectively improve the experimental efficiency of the proportion design of mechanism sand concrete and reduce the cost of materials and time.

mechanical sand concretecompressive strengthBP neural networkstone powder contentproportion design

张军、崔政新、裘松立、宋冰泉

展开 >

天津大学建筑工程学院,300072,天津

浙大宁波理工学院土木建筑工程学院,315100,浙江宁波

河南工业大学土木工程学院,450000,郑州

宁波交通工程建设集团有限公司,315000,浙江宁波

展开 >

机制砂混凝土 抗压强度 BP神经网络 石粉含量 配合比设计

2025

建筑技术
北京建工集团有限责任公司

建筑技术

影响因子:1.262
ISSN:1000-4726
年,卷(期):2025.56(1)