首页|基于BP神经网络和遗传算法的封闭式厨房污染物模拟与优化

基于BP神经网络和遗传算法的封闭式厨房污染物模拟与优化

扫码查看
中式烹饪产生的油烟污染物会对人体健康产生危害.现有的厨房污染物研究主要使用数值模拟和实测2种方法,这2种方法计算量大,研究时间长,因此本文使用代理模型,代替数值模拟软件进行厨房污染物研究与评估,然后通过遗传算法寻求最优参数组合.首先根据门窗灶位置关系,对566个单排型厨房实际案例进行了归类,建立了最具有代表性的单排型厨房原型模型.然后提出了通过厨房开间、进深、窗与灶具对侧墙之间距离、灶具与窗对侧墙之间距离4个参数来建立任一厨房实验模型的方法,搜集了 130个实际工程案例参数后,使用BP神经网络和Fluent建立了厨房尺寸参数和污染物浓度之间的厨房污染物浓度预测模型.最后使用遗传算法,寻求该模型的最小值,此时的自变量取值即为控制变量的最优参数组合,并验证了最优参数组合的准确性.结合建筑模数协调标准,给定最优参数组合的取值范围:厨房开间[1.7 m,1.8 m],厨房进深[3.9 m,4.0 m],窗洞口到墙面距离[0.17 m,0.18 m],灶具中心到墙面距离[0.34 m,0.35 m].在4个控制变量中,灶具中心到墙面距离对降低污染物浓度起到了更重要的作用.未来的厨房平面设计中,要考虑建筑模数协调与烹饪操作的空间需求,同时可结合本文研究结果,从而选择适宜的布局方案.
Simulation and Optimization of Pollutants in Enclosed Kitchen Based on BP Neural Network and Genetic Algorithm
The lampblack pollutants produced by Chinese cooking will cause harm to human health.The existing research on kitchen pollutants mainly uses numerical simulation and onsite measurement.These two methods consume a large amount of calculation and a long research time.Therefore,this paper used the surrogate model to replace the numerical simulation software for the research and evaluation of kitchen pollutants,and then uses a genetic algorithm to find the optimal parameters.First,according to the relationship between the door and window stoves,566 practical cases of single-row kitchens were classified,and the most representative single-row kitchen prototype model was established.Then,the method of establishing any sample model through the four control variables of kitchen bay,depth,the distance between the window and the wall,and the distance between the range and the wall was proposed.After collecting 130 actual sample model parameters,the prediction model for kitchen pollutant concentration between kitchen size parameters and pollutant concentration was established using the BP neural network and Fluent.Finally,a genetic algorithm was used to seek the minimum value of the model,and the independent variable value at this time was the optimal parameter combination of the control variable,and the accuracy of the optimal parameter combination was verified.Based on the building modulus coordination standard,the range of values for the optimal parameter combination was given:kitchen width[1.7 m,1.8 m],kitchen length[3.9 m,4.0 m],distance from window to wall[0.17 m,0.18 m],distance from stove to wall[0.34 m,0.35 m].Of the four control variables,the distance from stove to wall played a more important role in reducing the concentration of pollutants.In future kitchen graphic design,the space requirements of building module coordination and cooking operations should be considered,and the appropriate layout scheme can be selected based on the results of this study.

enclosed kitchenpollutant concentrationBP neural networkgenetic algorithmspace optimization

凌薇、杨遵挥、张芷薇、魏鑫

展开 >

哈尔滨工业大学建筑学院,哈尔滨 150006

寒地城乡人居环境科学与技术工业和信息化部重点实验室,哈尔滨 150006

封闭式厨房 污染物浓度 BP神经网络 遗传算法 空间优化

国家自然科学基金项目面上项目国家自然科学基金项目青年项目国家重点研发计划项目黑龙江省教育科学"十四五"规划2021年度重点课题

51978190518081592017YFE0105700GJB1421041

2024

建筑科学
中国建筑科学研究院

建筑科学

CSTPCD北大核心
影响因子:1.113
ISSN:1002-8528
年,卷(期):2024.40(2)
  • 24