首页|数据驱动的中央空调系统柔性优化控制方法

数据驱动的中央空调系统柔性优化控制方法

扫码查看
建筑节能对实现"双碳"战略目标有重要影响.为进一步提升建筑柔性用能潜力及自动化管理水平,亟需构建融合物联网、大数据等信息化技术的通用性建筑运维技术.本文提出了 1种面向中央空调系统的柔性优化控制方法,通过数据驱动方式构建系统能效及功能模型,进而从用能效率及成本层面实现优化控制.主要方法逻辑如下:首先,构建高精度建筑负荷预测模型,结合分时电价优化供冷量分布,节约用能成本;其次,构建中央空调系统关键设备能效及功能模型,包括制冷机组、各类水泵及冷却塔等,以推演不同工况下的运行表现;最后,基于启发式算法优化逐时控制参数,在满足负荷需求的前提下提升运行效率.以深圳市某酒店建筑为例,本文提出的柔性优化控制方法可有效调动建筑系统柔性潜力,节能和节财率分别达到19.1%和22.8%.相关研究成果有望为建筑系统柔性管理提供新思路和新参考.
Data-driven Methods for Flexible and Optimal Controls Over Central Air-conditioning Systems
Building energy saving has a significant impact on achieving the goal of"dual carbon"national strategies.To further enhance the flexible energy utilization potential and automation level of buildings,there is an urgent need to develop a comprehensive and intelligent operating methodology that integrates information technologies such as the Internet of Things and big data.This paper proposed a flexible optimization control method for central air conditioning systems.A data-driven approach was used to construct system efficiency and functional models and thereby,achieving optimization control from the perspectives of energy efficiency and cost.The main steps are as follows:First,a high-precision building cooling load forecasting model was established and the time-of-use electricity pricing was integrated to optimize cooling supply distributions and save energy costs.Second,efficiency and functional models for key equipment in central air conditioning systems were built,including chillers,water pumps,and cooling towers.Such models were then integrated to simulate operating performance under different control strategies.Finally,heuristic algorithms were employed to optimize hourly control parameters,improving operational efficiency while meeting load demands.Taking a hotel building in Shenzhen as an example,the flexible optimization control method proposed in this paper can effectively harness the flexible potential of building systems,resulting in a 19.1%energy savings and a 22.8%reduction in electricity costs.The research findings are expected to provide new insights and references for the flexible operation management of building systems.

flexible energy utilizationoptimal controlpredictive modelingdata-driven modelsbuilding energy management

何海辉、范成、吴秋婷、王慧龙

展开 >

深圳大学 中澳BIM与智慧建造联合中心,广东深圳 518060

深圳大学建设管理与房地产系,广东深圳 518060

滨海城市韧性基础设施教育部重点实验室,广东深圳 518060

柔性用能 优化控制 预测建模 数据驱动模型 建筑能源管理

国家自然科学基金深圳市科技计划&&

522781172022053110180000120220810160221001

2024

建筑科学
中国建筑科学研究院

建筑科学

CSTPCD北大核心
影响因子:1.113
ISSN:1002-8528
年,卷(期):2024.40(4)
  • 28