首页|结合LSTM与1DCNN的冷水机组故障诊断方法研究

结合LSTM与1DCNN的冷水机组故障诊断方法研究

扫码查看
在冷水机组运行中,传感器采集的是具有时间序列特征的数据,为从时间维度准确识别冷水机组故障数据特征并解决神经网络中由协变量偏移导致冷水机组故障诊断性能下降的问题,本文提出1种基于一维卷积神经网络(One-dimensional Convolutional Neural Network,1DCNN)与长短时记忆网络(Long Short-term Memory Network,LSTM)相结合的深度学习故障诊断方法.以ASHRAE RP-1043的故障实验数据作为方法模型训练及测试样本,探索网络模型参数对于诊断性能的影响.该模型结合1DCNN提取样本局部特征和LSTM处理样本时间序列的优点,并引入层归一化技术(Layer Normalization,LN)解决神经网络存在的协变量偏移导致网络训练过拟合问题,有效提升了对冷水机组故障诊断的性能.实验结果表明,提出的1DCNN-LN-LSTM模型故障识别准确率达98.85%,相比较单一深度学习模型如1DCNN和LSTM,1DCNN-LN-LSTM诊断方法的诊断性能明显提高.
Study on Fault Diagnosis Methods for Chillers Combining LSTM and 1DCNN
In chillers operation,the sensor collects data with time series characteristics.To accurately identify the fault data characteristics of chillers from the time dimension and address the problem of degrading fault diagnosis performance of chillers caused by covariate shift in neural networks,this paper proposed a deep learning fault diagnosis method combing One-dimensional Convolutional Neural Network(1DCNN)and Long Short-term Memory Network(LSTM).The fault experimental data of ASHRAE RP-1043 was used as the method model training and test samples to explore the influence of network model parameters on diagnostic performance.The model combines the advantages of 1DCNN to extract local features of samples and LSTM processing sample time series,and introduces layer normalization(LN)technology to solve the problem of network training overfitting caused by covariate shift in neural networks,effectively improving the performance of fault diagnosis of chillers.The experimental results show that the fault recognition accuracy of the proposed 1DCNN-LN-LSTM model reaches 98.85%,significantly improving the diagnostic performance compared with single deep learning models such as 1DCNN and LSTM.

fault diagnosislong short-term memory network(LSTM)one-dimensional convolutional neural network(1DCNN)chiller

李聪、丁强、刘亚祥、梁涛

展开 >

杭州电子科技大学能量利用系统及自动化研究所,杭州 310018

山东电力工程咨询院有限公司,济南 250013

故障诊断 长短时记忆网络 一维卷积神经网络 冷水机组

国家重点研发计划

2018YFE0208400

2024

建筑科学
中国建筑科学研究院

建筑科学

CSTPCD北大核心
影响因子:1.113
ISSN:1002-8528
年,卷(期):2024.40(6)