首页|基于智能电表数据的饮水机热水使用行为识别方法研究

基于智能电表数据的饮水机热水使用行为识别方法研究

扫码查看
蓄热式饮水机是民用建筑中的常见电器,其在无人取用热水时为了维持水温,需要持续加热.人员使用饮水机热水的行为包括取用热水量和取热水时刻.如果能根据人员的饮水机使用行为,确定无人饮水时刻,关闭饮水机,则可以减少饮水机待机加热过程的耗电,实现设备节能.然而,饮水机使用行为难以被直接地、持续地识别.因此,本研究开发了 1种基于智能电表功率监测的使用饮水机热水行为识别算法.该算法以测量的饮水机电功率数据为基础,通过饮水机传热模型识别饮水机使用行为.饮水机传热模型是识别算法的关键,本研究构建饮水机传热模型并采用贝叶斯校准法校准并检验.本研究测试了 3个实际案例,分别对3个案例构建了 3个饮水机传热模型,基于饮水机传热模型识别饮水机使用行为.3个案例中,日均取热水量的识别误差为0.1~0.6L,日均取水次数的识别误差为0.2~4次.本研究提出的使用饮水机热水行为的识别算法可为热水器等其他蓄热式设备的使用行为识别提供参考,并可利用识别的使用行为,指导小型柔性调节设备的智能控制.
Study on the Recognition Methods for Water Fountain Usage Behavior Based on Smart Meter Data
Regenerative water fountain,as a common appliance in buildings,has to be continuously heated to keep water temperature when no one is taking hot water.The water fountain usage behaviors include volume of hot water taken and the time when taking hot water.If the fountain can be shut down through the identification of non-water-taken time based on the water fountain usage behaviors,power consumption used for water heating during standby time can be reduced,realizing energy saving.However,it is difficult to recognize the water fountain usage behavior directly and continuously.Therefore,we developed a behavior recognition algorithm for water fountains based on smart meter power monitoring.The algorithm uses the power data of the water fountain measured and recognize the water fountain usage behaviors through the heat transfer model.The heat transfer model is the core of the recognition algorithm,and this study used Bayesian Calibration methods to calibrate and validate the heat transfer model of the water fountain.This study tested three real cases by establishing three water fountain heat transfer models to recognize the usage behaviors.The recognition error of daily water usage ranges from 0.1 L to 0.6 L,and the error of daily number of water-taken behaviors ranges from 0.2 to 4.The proposed behavior recognition method can provide reference for the recognition of usage behavior of heaters and other regenerative heating devices and guidance for the smart control of small-scale flexible adjustment equipment based on the recognized usage behaviors.

occupant behavior recognitionhot water usage behaviorsmart meterbayesian calibrationheat transfer modeling

王潇、燕达、康旭源、晋远

展开 >

清华大学建筑学院建筑节能研究中心,北京 100084

人行为识别 热水使用行为 智能电表 贝叶斯校准 传热建模

北京市自然科学基金资助项目(面上项目)国家自然科学基金

822201952225801

2024

建筑科学
中国建筑科学研究院

建筑科学

CSTPCD北大核心
影响因子:1.113
ISSN:1002-8528
年,卷(期):2024.40(6)