首页|考虑需求响应的变风量空调系统强化学习静压控制

考虑需求响应的变风量空调系统强化学习静压控制

扫码查看
需求响应(DR)策略被提出用于解决电网中的电力不平衡等问题.暖通空调(HVAC)系统的节能降耗是建筑节能的重要组成部分,变风量(VAV)空调系统的运行是1个复杂的动态过程,而强化学习(RL)算法在动态控制方面具有巨大潜力.本研究的重点是基于RL,结合DR策略,优化VAV空调系统的静压控制.基于上述背景,提出了基于DR-RL的VAV空调系统静压优化控制策略.建立了 TRNSYS+Python联合仿真平台进行RL模型训练,并在物理实验平台上测试了基于DR-RL的静压优化控制策略.与传统的静压控制策略相比,在保证基本热舒适的前提下,所提策略有效实现了 DR期间风机负荷削减及全天运行费用节省.
Reinforcement Learning Control of Static Pressure in Variable Air Volume Air-conditioning System with Demand Response
Demand response(DR)strategies have been proposed to solve problems such as power imbalance in the grid.Energy saving in heating,ventilation and air-conditioning(HVAC)systems is an important part of building energy efficiency.The operation of variable air volume(VAV)air-conditioning systems is a complex dynamic process,and reinforcement learning(RL)algorithms have great potential for dynamic control.This study focused on optimizing the static pressure control of VAV air-conditioning systems based on RL,combined with DR strategies.Based on the above background,a DR-RL-based static pressure optimization control strategy for VAV air-conditioning systems was proposed.A joint TRNSYS+Python simulation platform was established for RL model training,and the DR-RL-based static pressure optimization control strategy was tested on a physical experimental platform.Compared with the traditional static pressure control strategy,the proposed strategy effectively achieves fan load reduction during DR and all-day operation cost saving under the premise of ensuring basic thermal comfort.

variable air volume air-conditioning systemstatic pressure controlreinforcement learningdemand responsecontrol strategy optimization

韦应安、孟庆龙、辛东岳、任奕欣、杨洋、王钰翔、李彦鹏

展开 >

长安大学建筑工程学院,西安 710061

变风量空调系统 静压控制 强化学习 需求响应 控制策略优化

陕西省自然科学基础研究计划资助项目

2023-JC-YB-335

2024

建筑科学
中国建筑科学研究院

建筑科学

CSTPCD北大核心
影响因子:1.113
ISSN:1002-8528
年,卷(期):2024.40(8)