首页|基于多目标的寒冷地区近零能耗建筑优化设计方法与应用

基于多目标的寒冷地区近零能耗建筑优化设计方法与应用

扫码查看
针对近零能耗建筑技术选择难以兼顾节能效果及经济性的现状,本文通过构建包含不同近零能耗建筑技术的能耗函数及增量成本函数,利用NSGA-Ⅱ寻优算法,结合净现值与节能率筛选,建立了近零能耗建筑优化设计方法.基于典型案例的研究结果表明:该方法得出的相关优化方案可有效降低建筑综合能耗与增量成本,外墙K值在《近零能耗建筑技术标准》要求限值0.3 W/(m2·K)的基础上降低55.6%~57%,同时屋面K值满足该标准下限要求,可实现最佳的经济性能.通过案例验证,使用本方法提供的最佳经济模板进行优化设计后的建筑节能率达到77%;增量成本约831元/m2,相较于同类型项目降低约6.7%~30.7%.
Multi-objective Optimization Design Method and Application of Nearly-zero Energy Buildings in Cold Areas
In response to the current challenge of balancing energy efficiency and cost-effectiveness in the selection of nearly-zero energy building technologies,this paper developed an optimization design method for nearly-zero energy buildings by creating energy consumption and incremental cost functions that incorporate various nearly-zero energy building technologies,utilizing the NSGA-Ⅱ optimization algorithm,and combining net present value with energy-saving rate screening.Research results based on typical cases showed that the relevant optimization schemes derived from this method can effectively reduce the comprehensive energy consumption and incremental costs of buildings.Specifically,the K-value of exterior walls was decreased by 55.6%~57%from the specified limit of 0.3 W/(m2 k)in the Technical Standard for Nearly Zero Energy Buildings,while the K-value of the roof met the lower limit requirement,achieving optimal economic performance.A case study showed that using the optimal economic template provided by this method for optimized design resulted in a building energy-saving rate of 77%,and the incremental costs were approximately 831 yuan/m2,representing a reduction of about 6.7%~30.7%compared to similar projects.

nearly-zero energy buildingsmulti-objective optimizationNSGA-Ⅱ genetic algorithmenergy-saving ratenet present value

董小丽、成雄蕾、付铮

展开 >

甘肃土木工程科学研究院有限公司,兰州 730000

中国建筑科学研究院有限公司,北京 100013

中国建筑科学研究院天津分院,天津 300380

国家建筑工程技术研究中心,北京 100013

展开 >

近零能耗建筑 多目标优化 NSGA-Ⅱ遗传算法 节能率 净现值

2024

建筑科学
中国建筑科学研究院

建筑科学

CSTPCD北大核心
影响因子:1.113
ISSN:1002-8528
年,卷(期):2024.40(12)