首页|基于机器学习的重症患儿院际转运风险预测模型的构建

基于机器学习的重症患儿院际转运风险预测模型的构建

扫码查看
目的 基于机器学习方法构建重症患儿院际转运风险预测模型,识别出影响转运预后的关键性医学特征,提高转运的成功率.方法 前瞻性的选取2020年1月至2021年1月期间湖南省儿童医院转运中心通过院际转运的收住重症监护病房的重症患儿为研究对象,对其重症医学特征数据和第三代儿童死亡风险(pediatric risk of mortality,PRISM Ⅲ)评分系统的相关数据进行收集和处理,基于逻辑回归、决策树模型、Relief算法3种机器学习模型构建风险预测模型,利用反向传播神经网络构建转诊结局预测模型对风险预测模型所选医学特征进行验证和分析,探寻影响院际转运风险的关键医学特征.结果 在纳入的549例转诊患儿中,新生儿222例(40.44%),非新生儿327例(59.56%),院内死亡50例,病死率为9.11%.对所收集的151项重症患儿医学特征数据进行数据处理,三种模型各自选取影响转诊结局的前15项重要的特征,共有34项入选.其中决策树模型所选特征与PRISM Ⅲ指标的重叠度为72.7%,高于逻辑回归的36.4%和Relief算法的27.3%,且训练预测精确率为0.94,也高于纳入所有特征训练精确率0.90,表明决策树模型是一种具有良好临床实用性的预测模型.在决策树入选的前15项重要特征中,通过量化特征的小提琴图对转诊结局影响的大小排序为:碱剩余、总胆红素、钙离子、总耗时、动脉氧分压、血液(包括白细胞、血小板、凝血酶原时间/凝血活酶时间)、二氧化碳分压、血糖、收缩压、心率、器官衰竭、乳酸、毛细血管再充盈时间、体温、发绀,其中有8项重要特征与PRISM Ⅲ的指标重叠,分别是收缩压、心率、体温、瞳孔反射、神志状态、酸中毒、动脉氧分压、二氧化碳分压、血液、血糖.利用决策树分别对新生儿和非新生儿两个数据集选择有高度影响的前15个医学特征,共有19项特征入选,其中新生儿与非新生儿的重要特征之间有8个差异项和11个重叠项.结论 机器学习模型可作为预测重症患儿院际转运风险的可靠工具.决策树模型具有较佳的性能,有助于识别影响院际转运风险的关键医学特征,提高重症患儿院际转运的成功率.
Construction of a machine learning-based risk prediction model for inter-hospital transfer of critically ill children
Objective To construct a risk prediction model for the inter-hospital transfer of critically ill children using machine learning methods,identify key medical features affecting transfer outcomes,and improve the success rate of transfers.Methods A prospective study was conducted on critically ill children admitted to the pediatric transfer center of Hunan Children's Hospital from January 2020 to January 2021.Medical data on critical care features and relevant data from the Pediatric Risk of Mortality(PRISM Ⅲ)scoring system were collected and processed.Three machine learning models,including logistic regression,decision tree,and Relief algorithm,were used to construct the risk prediction model.A back propagation neural network was employed to build a referral outcome prediction model to verify and analyze the selected medical features from the risk prediction model,exploring the key medical features influencing inter-hospital transfer risk.Results Among the 549 transferred children included in the study,222 were neonates(40.44%)and 327 were non-neonates(59.56%).There were 50 children in-hospital deaths,resulting in a mortality rate of 9.11%.After processing 151 critical care medical feature data points,each model selected the top 15 important features influencing transfer outcomes,with a total of 34 selected features.The decision tree model had an overlap of 72.7%with PRISM Ⅲ indicators,higher than logistic regression(36.4%)and Relief algorithm(27.3%).The training prediction accuracy of the decision tree model was 0.94,higher than the accuracy of 0.90 when including all features,indicating its clinical utility.Among the top 15 important features selected by the decision tree model,the impact on transfer outcomes was ranked as follows based on quantitative feature violin plots:base excess,total bilirubin,ionized calcium,total time,arterial oxygen pressure,blood parameters(including white blood cells,platelets,prothrombin time/activated partial thromboplastin time),carbon dioxide pressure,blood glucose,systolic blood pressure,heart rate,organ failure,lactate,capillary refill time,temperature,and cyanosis.Eight of these important features overlapped with PRISM Ⅲ indicators,including systolic blood pressure,heart rate,temperature,pupillary reflex,consciousness,acidosis,arterial oxygen pressure,carbon dioxide pressure,blood parameters,and blood glucose.The decision tree was used to select the top 15 medical features with high impact on the neonatal and non-neonatal datasets,respectively.A total of 19 features were selected,among which there were 8 differences and 11 overlap terms between the important features of the neonatal and non-neonatal.Conclusions Machine learning models could serve as reliable tools for predicting the risk of inter-hospital transfer of critically ill children.The decision tree model exhibits superior performance and helps identify key medical features affecting inter-hospital transfer risk,thereby improving the success rate of inter-hospital transfers for critically ill children.

Inter-hospital transferCritically ill childrenMachine learningPediatric risk of mortality scorePrediction model

袁远宏、张慧、欧叶玉、康霞艳、刘娟、胥志跃、朱丽凤、肖政辉

展开 >

湖南省儿童医院急救中心,长沙 410007

湖南省儿童医院肝病中心,长沙 410007

中南大学计算机科学与工程学院,长沙 410012

院际转运 重症患儿 机器学习 儿童死亡风险评分 预测模型

湖南省科技厅临床医疗技术创新引导项目湖南省科技创新重点工程项目湖南省科技厅重点实验室项目

2021SK505012020SK10141-32018TP1028

2024

中华急诊医学杂志
中华医学会

中华急诊医学杂志

CSTPCD北大核心
影响因子:1.556
ISSN:1671-0282
年,卷(期):2024.33(5)
  • 13