首页|基于全卷积神经网络的遥感图像线性构造解译方法——以云县官房铜矿区为例

基于全卷积神经网络的遥感图像线性构造解译方法——以云县官房铜矿区为例

扫码查看
文章研究了深度学习方法在地质构造解译中的应用,探究了相比传统的线性构造方法更为高效且无需先验知识的方法.以基于全卷积神经网络(FCN)的图像像素注释方法实现了遥感数据对于线性构造解译半自动解译.选择云南省云县官房铜矿矿区作为实验区域,绘制的图件表明该解译方法能够满足普通地质研究的基本需求,同时也能作为人工线性构造解译工作的初步参考,具有一定的研究意义.而与其他传统自动解译方法对比,可以发现在解译精度、效率和可重复使用性上都存在一定的优势.这些研究成果对于地质构造解译的自动化发展具有重要的参考价值,也为遥感解译智能化的发展提供了新思路.
Linear structure interpretation method of remote sensing image based on full convolution neural network:An example of Guanfang copper mining area in Yunxian County
This paper investigates the application of deep learning method in geological structure interpreta-tion and explores for a more efficient and prior-knowledge-free approach compared to traditional linear con-struction method.An image pixel annotation method based on fully convolution neural network(FCN)is used to achieve semi-automated interpretation of linear structure with remote sensing data.Guanfang copper mining area in Yun County,Yunnan Province is selected as the experimental area,and the study result indi-cates that this interpretation method can meet the basic need of general geological research and serves as a preliminary reference for manual linear interpretation work with a certain research significance.Compared with other traditional automatic interpretation methods,it has the advantage in interpretation accuracy,effi-ciency and reusability.These research results have an important reference value for the automation develop-ment of geological structure interpretation,and it also provides a new idea for the intelligent development of remote sensing interpretation.

linear structurefull convolution neural networkGuanfang copper depositsemantic segmentation

王宇翔、常河、王玉祥

展开 >

昆明理工大学国土资源工程学院,云南昆明 650093

线性构造 全卷积神经网络 官房铜矿 语义分割

国家重点研发计划项目

2017YFC0602500

2024

矿产与地质
桂林矿产地质研究院

矿产与地质

CSTPCD
影响因子:0.42
ISSN:1001-5663
年,卷(期):2024.38(1)
  • 20