首页|基于深度强化学习的零售库存管理

基于深度强化学习的零售库存管理

扫码查看
在数字化快速发展的商业环境下,为了在激烈的市场竞争中保持竞争力,实体零售商亟需采用高效的方法来优化其库存管理.本研究依托于深度强化学习理论,应用优势演员-评论家算法,为实体零售商优化库存管理提供科学指导.具体地,本研究利用真实历史销售数据构建模拟训练环境,并采用深度神经网络学习并优化针对多品类商品在有限容量约束下的库存管理策略.本研究具有重要的理论意义和实际应用价值,为实体零售商在竞争激烈的市场环境中实现高效库存管理提供了新的思路和方法.
Retail Inventory Management Based on Deep Reinforcement Learning
In the rapidly evolving digital business environment,to maintain competitiveness amid fierce market competition,brick-and-mortar retailers urgently need to adopt effective methods to optimize their inventory management.This study is grounded in deep reinforcement learning theory and applies the Actor-Critic algorithm to provide scientific guidance for optimizing inventory management for brick-and-mortar retailers.Specifically,the study constructed a simulated training environment using real historical sales data,and employed deep neural networks to learn and optimize inventory management strategies for multiple product categories under limited capacity constraints.This study holds significant theoretical and practical value,offering new insights and methods for brick-and-mortar retailers to achieve efficient inventory management in a competitive market environment.

deep reinforcement learningAdvantage Actor-Criticretailinventory management

朱鹏霖

展开 >

中国科学院大学中丹学院 北京 100190

深度强化学习 优势演员-评论家 零售 库存管理

2024

科技促进发展
中国科学院科技政策与管理科学研究所 中国高技术产业发展促进会

科技促进发展

影响因子:0.629
ISSN:1672-996X
年,卷(期):2024.20(5)
  • 3