首页|水电站来水量预测

水电站来水量预测

扫码查看
本文针对神经网络存在结构较难确定,训练易陷入局部最优以及容易过学习等问题,提出将改进最小二乘支持向量机用于预测水电站来水量。实例分析表明,与基于BP网络的时用水量模型相比,基于改进最小二乘支持向量机的水电站来水量动态变化模型具有更强的预测能力。
Water volume Prediction In Hydropower
This paper, as traditional neural network suffers from the problems like the existence of many local minima and the choice of the number of hidden units, and over fiting ameliorate least squares support vector machine is proposed to predict the Hydropower Water volume. Case study shows that ameliorate least squares support vector machine based Hydropower Water volume forecast model has better generalization ability than BP neural network-based forecast model.

support vector machineWater volumepredict

王海军、刘文

展开 >

中电投云南国际电力投资有限公司 云南昆明 650228

支持向量机 来水量 预测

2014

科技创业家
国家科技部《大众科技报社》

科技创业家

ISSN:2095-1043
年,卷(期):2014.(6)
  • 3