摘要
一偏微分方程的形式幂级数解只有在特定的条件下,才是多重可和的,即通过证明才能确认一偏微分方程的形式幂级数解是否可和.在对方程形式幂级数解可和性的证明中,解的gevrey阶数的证明是非常重要的一部分.本文就是对一偏微分方程的形式幂级数解的性质进行研究,我们先了解后续证明所需要的相关概念之后,给出本文要研究的偏微分方程,并对其形式幂级数解的存在性与唯一性进行证明.在此基础上,利用Nagumo范数及其性质,结合gevrey阶数的相关概念,最终可以证明,方程的形式幂级数解在单项式xp1xq2 为 1/k-gevrey阶数.