空军工程大学学报2024,Vol.25Issue(1) :115-122.DOI:10.3969/j.issn.2097-1915.2024.01.017

基于深度聚类的通信辐射源个体识别方法

A Communication Emitter Identification Method Based on Deep Clustering

贾鑫 蒋磊 郭京京 齐子森
空军工程大学学报2024,Vol.25Issue(1) :115-122.DOI:10.3969/j.issn.2097-1915.2024.01.017

基于深度聚类的通信辐射源个体识别方法

A Communication Emitter Identification Method Based on Deep Clustering

贾鑫 1蒋磊 1郭京京 2齐子森1
扫码查看

作者信息

  • 1. 空军工程大学信息与导航学院,西安,710077
  • 2. 93184部队, 北京,100076
  • 折叠

摘要

针对非合作通信条件下缺少标签数据的通信辐射源个体识别问题,提出了一种基于深度聚类的通信辐射源个体识别方法.利用自编码器网络强大的特征提取和数据重构能力对原始I/Q数据进行表征学习,提取个体识别的指纹特征,同时将表征学习过程和特征聚类过程进行联合优化,使表征学习和特征聚类契合度更高,更好地完成无标签条件下的通信辐射源个体识别.通过对5种ZigBee设备采集的信号进行实验,结果表明在信噪比高于0 dB时,可以达到85%以上的识别准确率,证明了本文方法的有效性和稳定性.

Abstract

Aimed at the problem that individual identification of communication radiation sources has a cer-tain lack of label data under conditions of non-cooperative communication,a method of individual identifi-cation of communication emitter is proposed based on deep clustering.The powerful feature extraction and data reconstruction capabilities of the auto-encoder network are utilized for carrying out the representation learning of the original I/Q data,extracting the fingerprint features of individual recognition,and jointly optimizing the representation learning process and the feature clustering process,so as to achieve a higher fit between the representation learning and the feature clustering,and complete still greater individual i-dentification of the communication emitter without labels.The experimental results show that the recogni-tion accuracy is more than 85%when the SNR is above 0 dB.And the proposed method is valid and sta-ble.

关键词

个体识别/深度聚类/无监督/通信辐射源/特征提取/数据重构

Key words

individual identification/deep clustering/unsupervised/communication radiation sources/fea-ture extraction/data reconstruction

引用本文复制引用

基金项目

国家自然科学基金(62131020)

出版年

2024
空军工程大学学报
空军工程大学科研部

空军工程大学学报

CSTPCD北大核心
影响因子:0.55
ISSN:2097-1915
参考文献量8
段落导航相关论文