首页|基于优化双向A*与人工势场法的无人机三维航迹规划

基于优化双向A*与人工势场法的无人机三维航迹规划

扫码查看
针对传统A*算法在无人机航迹规划中面对复杂环境和高动态任务时存在搜索速度慢、冗余节点多等问题,提出了一种基于优化双向A*算法和人工势场相结合的三维无人机航迹规划方法.通过采用双向搜索机制并设置权重系数优化启发函数,引入自适应步长策略,利用调节因子动态调整双向A*搜索步长,综合考虑全局规划与实时避障需求提出了 Bi-A*PF算法.仿真实验表明:与传统的航迹规划方法相比,Bi-A*PF算法不仅能够使无人机在三维环境下高效规划出一条期望航迹,还能有效避开突发威胁.
3D UAV Trajectory Planning Based on Optimized Bidirectional A* and Artificial Potential Field Method
Aiming at the problems of slow search speed and many redundant nodes of traditional A*algo-rithms in UAV trajectory planning when facing complex environments and high-dynamic tasks,a 3D UAV trajectory planning method based on the combination of optimized bi-directional A*algorithm and artificial potential field is proposed.By adopting a bidirectional search mechanism and setting weight coefficients to optimize the heuristic function,introducing an adaptive step-size strategy,and dynamically adjusting the bidirectional A*search step-size by using an adjustment factor,the Bi-A*PF algorithm is proposed by comprehensively considering the global planning and real-time obstacle avoidance requirements.Simulation experiments show that compared with traditional trajectory planning methods,the Bi-A*PF algorithm not only enables the UAV to efficiently plan a desired trajectory in a 3D environment,but also effectively a-voids unexpected threats.

UAVbidirectional A* algorithmartificial potential field algorithmtrajectory planning

唐宇洋、郑恩辉、邱潇

展开 >

中国计量大学机电工程学院,杭州,310018

无人机 双向A*算法 人工势场算法 航迹规划

"十四五"国家重点研发计划重点专项

2022YFF0708600

2024

空军工程大学学报
空军工程大学科研部

空军工程大学学报

CSTPCD北大核心
影响因子:0.55
ISSN:2097-1915
年,卷(期):2024.25(5)
  • 10