首页|基于IPSO-SVR的反导装备体系效能评估方法研究

基于IPSO-SVR的反导装备体系效能评估方法研究

扫码查看
鉴于反导装备体系运行机理复杂、结构不清难以选择合适的效能评估模型等问题,采用"数据驱动+深度学习"的方法对反导装备体系效能评估展开研究.结合反导装备体系作战过程,从探测跟踪、指挥控制、火力拦截和综合保障4个方面构建了反导装备体系效能评估指标;针对PSO算法容易陷入局部极值、早熟收敛等问题,提出改进型粒子群优化算法,对SVR参数进行优化,建立了 IPSO-SVR效能评估模型;在大量反导装备体系实验数据抽取、处理、分析的基础上,对IPSO-SVR模型进行训练和学习,以此获得对反导装备体系效能的非线性拟合.实验结果表明:所提效能评估方法期望输出和实际输出之间误差非常小,拟合精准度高,具有较高的可靠性和可行性.
Research on Effectiveness Evaluation Method in Anti-Missile Equipment System Based on IPSO-SVR
In view of the complex operation mechanism of anti-missile equipment system,the unclear structure which makes it difficult to select a suitable efficiency evaluation model,so the effectiveness eval-uation of anti-missile equipment system is studied by the method of"data-driven+deep learning".Based on the operational process of the anti-missile equipment system,the evaluation index of the effec-tiveness of the anti-missile system is constructed from four aspects:detection and tracking,command and control,firepower interception and integrated support.To solve the problems of PSO algorithm,such as local extremum and premature convergence,an improved particle swarm optimization algorithm is pro-posed to optimize the parameters of SVR,and an IPSO-SVR efficiency evaluation model is established.On the basis of extracting,processing and analyzing a large number of experimental data,the IPSO-SVR model is trained and studied to obtain nonlinear fitting of the effectiveness of the anti-missile equipment system.The experimental results show that the proposed method has a very small error between the ex-pected output and the actual output and it has high fitting accuracy,which means this method has high re-liability and feasibility.

anti-missile equipment systemeffectiveness evaluationdeep intelligenceIPSOSVR

赵海燕、周峰、杨文静、王瑞君、刘迪

展开 >

空军工程大学防空反导学院,西安,710051

国防科技大学信息通信学院,武汉,430035

陆军边海防学院职业教育中心,西安,710043

反导装备体系 效能评估 深度智能 IPSO SVR

国家自然科学基金陕西省自然科学基础研究计划面上项目

620010592023JCYB509

2024

空军工程大学学报
空军工程大学科研部

空军工程大学学报

CSTPCD北大核心
影响因子:0.55
ISSN:2097-1915
年,卷(期):2024.25(5)
  • 7