首页|基于智能反射面辅助矿井通信系统信道估计

基于智能反射面辅助矿井通信系统信道估计

扫码查看
针对矿井下复杂、随机的无线信道特性所导致的信道估计准确度低的问题,结合智能反射面IRS技术,提出了井下IRS辅助多用户通信系统模型,通过优化传输路径、重新配置无线传输环境,提高井下信道估计准确度.首先,结合IRS技术,建立了井下IRS辅助多用户信号传输模型,基于该模型推导了平行因子分解信道估计算法,并仿真了该算法在IRS辅助矿井通信系统中的性能.仿真结果表明,与传统的最小二乘(LS)算法和正交匹配追踪算法相比,在归一化均方误差为10-2时,PARAFAC分解算法信噪比可降低约8 dB,且算法执行时间略小于LS算法.
A Channel Estimation for Intelligent Reflecting Surface Aided Mine Wireless Communications
Aimed at the problems that mine wireless communications are low-accuracy in channel estima-tion caused by complicated and random characteristics,a multi-user mine communication system assisted by intelligent reflecting surface(IRS)technique is proposed in this paper to improve the accuracy of chan-nel estimation by optimizing the transmission path and reassigning the wireless transmission environment.First,in combination with IRS technique,a model of the IRS-assisted multi-user information transmission in the mine is established.And then,the parallel factor(PARAFAC)decomposition channel estimation algorithm is derived,and the performances of PARAFAC algorithm in the IRS-assisted mine wireless com-munications is simulated based on the model.The simulation results show that compared with the tradi-tional least-square(LS)algorithm and orthogonal matching pursuit algorithm,the proposed PARAFAC algorithm can obtain about 8 dB signal-to-noise ratio(SNR)gain at the same normalized mean-square error 10-2 while the execution time is slightly less than that of LS algorithm.

mine wireless communicationschannel estimationintelligent reflecting surfacemean-square error

刘洋、王希阳、钱燕芝、王斌

展开 >

西安科技大学通信与信息工程学院,西安,710054

西安市网络融合通信重点实验室,西安,710054

矿井无线通信 信道估计 智能反射面 均方误差

国家自然科学基金联合基金重点项目

U19B2015

2024

空军工程大学学报
空军工程大学科研部

空军工程大学学报

CSTPCD北大核心
影响因子:0.55
ISSN:2097-1915
年,卷(期):2024.25(5)
  • 5