空军工程大学学报2024,Vol.25Issue(5) :121-127.DOI:10.3969/j.issn.2097-1915.2024.05.016

异步联邦学习中隔代模型泄露攻击及防治方法

An Attacking and Prevention Method of Inter-Generational Model Leakage in Asynchronous Federated Learning

胡智尧 于淼 田开元
空军工程大学学报2024,Vol.25Issue(5) :121-127.DOI:10.3969/j.issn.2097-1915.2024.05.016

异步联邦学习中隔代模型泄露攻击及防治方法

An Attacking and Prevention Method of Inter-Generational Model Leakage in Asynchronous Federated Learning

胡智尧 1于淼 1田开元1
扫码查看

作者信息

  • 1. 军事科学院战争研究院,北京,100091
  • 折叠

摘要

联邦学习已成为数据孤岛背景下知识共享的成功方案.随着梯度逆向推理等新式攻击手段的问世,联邦学习的安全性再度面临新挑战.针对联邦学习可能存在参与者恶意窃取其它客户端梯度信息的风险,提出一种异步联邦学习框架下的隔代模型泄露攻击方式:利用中心服务器"接收则聚合"的特点,多名恶意客户端可按照特定更新顺序,通过隔代版本的全局模型差异逆向计算其他客户端的模型更新数据,从而窃取对方的模型.针对此问题,提出基于a-滑动平均的随机聚合算法.首先,中心服务器每次收到客户端的模型更新后,将其与从最近a次聚合中随机选出的全局模型进行聚合,打乱客户端的更新顺序;其次,随着全局迭代次数增加,中心服务器对最近a次聚合的全局模型进行滑动平均,计算出最终全局模型.实验结果表明,与异步联邦学习方法相比,FedAlpha方法有效降低隔代模型泄露攻击的可能性.

Abstract

Federated learning is a successful solution for shared knowledge in the context of data islands.However,with the advent of new attacks such as gradient reverse reasoning,the security of federated learning is faced with a new challenges again.In the federated learning,an inter-generational model leak-age problem under the asynchronous federated learning framework is proposed aimed at the problem that participants maliciously steal gradient information from other clients by any possibility.By utilizing the characteristics of central server receiving then aggregating,multiple malicious clients can reversely com-pute other clients'model update data through inter-generational versions of the global model in a specific update order.In view of this problem,a random aggregation algorithm based on a moving average is pro-posed.Firstly,the model update being received each time,the central server is to aggregate it with the global model randomly selected from the latest a aggregations,and shuffle the clients'update order through the randomness of the aggregation.Secondly,as the number of global iterations increases,the central server performs a moving average on the global model of the latest aggregation to calculate the final global model.The experiment simulations show that the FedAlpha method can effectively reduce the pos-sibility of inter-generational model leakage in comparison with the asynchronous federated learning meth-od.

关键词

异步联邦学习安全/逆向推理攻击/随机聚合/滑动平均/隔代模型泄露攻击

Key words

asynchronous federated learning security/reverse reasoning attack/random aggregation/mov-ing average/intergenerational gradient leakage

引用本文复制引用

基金项目

国家自然科学基金(62202491)

国家自然科学基金(62402519)

出版年

2024
空军工程大学学报
空军工程大学科研部

空军工程大学学报

CSTPCD北大核心
影响因子:0.55
ISSN:2097-1915
参考文献量1
段落导航相关论文