首页|基于改进SE-ResNet-BiLSTM的航空发动机中介轴承故障诊断

基于改进SE-ResNet-BiLSTM的航空发动机中介轴承故障诊断

扫码查看
针对现阶段航空发动机中介轴承振动信号易受噪声干扰,故障特征难提取导致的故障诊断精度较低的问题,提出一种基于改进残差注意力网络和双向长短期记忆神经网络(BiLSTM)的航空发动机中介轴承故障诊断方法。首先,将原始振动信号作为模型输入,利用一维宽卷积从原始数据中提取局部空间特征并抑制高频噪声;然后,使用结合改进通道注意力的残差网络增强模型对重要特征的关注,减少模型运算量,将处理后的特征输入到BiLSTM中,进一步提取时序相关性特征;最后,将特征输入到Softmax层进行故障分类。使用哈工大航空发动机中介轴承数据集进行实验验证,结果表明,即使在信噪比为-4 dB的高噪声环境,所提模型仍能保持98。64%的诊断精度,优于其他对比模型,证明该模型具有更好的特征提取能力和抗噪性。
A Fault Diagnosis for Inter-Shaft Bearing of Aero-Engine Based on Improved SE-ResNet-BiLSTM
Aimed at the problems that fault diagnosis is low to accuracy caused by extracting fault features diffi-cultly,and vibration signals of inter-shaft bearing on aero-engine are susceptible to noise interference at present,a fault diagnosis method is proposed for aero-engine inter-shaft bearing based on the improved residual attention net-work and bidirectional long short-term memory neural network(BiLSTM).Firstly,taking the original vibration signal as a model input,the local spatial features are extracted from the raw data by utilizing one-dimensional wide convolution,and the high-frequency noise is suppressed.And then,a residual network in combination with the improved channel attention is utilized for enhancing model attention to important features and reducing model com-putational complexity,and the processed features are input into BiLSTM to further extract temporal correlation features.Finally,the features are input into the Softmax layer for fault classification.The experimental validation is conducted by using the Harbin Institute of Technology Aeroengine intershaft bearing dataset,and the results show that the proposed model can maintain the diagnostic accuracy of 98.64%even in the high noise environment with the signal-to-noise ratio of-4 dB,is prior to the other comparative models,and has the better ability to ex-tract features and resist noise.

aero-engineinter-shaft bearingfault diagnosisresidual networkbidirectional long short-term memory network

郁万康、冷子文、高军伟、车鲁阳

展开 >

青岛大学自动化学院,山东 青岛,266071

山东省工业控制技术重点实验室,山东 青岛,266071

日照市特种设备检验科学研究院,山东 日照,276800

航空发动机 中介轴承 故障诊断 残差网络 双向长短期记忆神经网络

2024

空军工程大学学报
空军工程大学科研部

空军工程大学学报

CSTPCD北大核心
影响因子:0.55
ISSN:2097-1915
年,卷(期):2024.25(6)