空军工程大学学报2024,Vol.25Issue(6) :104-112.DOI:10.3969/j.issn.2097-1915.2024.06.013

融合经验模态分解与改进时域Transformer的网络安全态势预测

A Network Security Situation Prediction Based on Empirical Mode Decomposition and Improved Temporal Transformer

孙隽丰 李成海 宋亚飞 倪鹏
空军工程大学学报2024,Vol.25Issue(6) :104-112.DOI:10.3969/j.issn.2097-1915.2024.06.013

融合经验模态分解与改进时域Transformer的网络安全态势预测

A Network Security Situation Prediction Based on Empirical Mode Decomposition and Improved Temporal Transformer

孙隽丰 1李成海 2宋亚飞 2倪鹏3
扫码查看

作者信息

  • 1. 空军工程大学防空反导学院,西安,710051;94994部队,南京,210000
  • 2. 空军工程大学防空反导学院,西安,710051
  • 3. 复杂航空系统仿真重点实验室,北京,100076
  • 折叠

摘要

针对网络安全态势预测任务复杂且真实环境下数据噪声较大等问题,提出一种融合经验模态分解与改进时域Transformer的网络安全态势预测方法,通过"分解-重构"方式使用完全自适应噪声集合经验模态分解方法对真实环境下网络安全态势数据进行去噪预处理;提出改进时域Transformer,使用时域Trans-former模块提取网络安全态势数据序列的时间深层全局特征,并提出Attention Fusion机制实现时序特征的自适应融合,以更加稳健的特征融合方式完成预测任务.实验结果表明,本文提出的方法相较其他方法在预测精度方面具有显著提高,其拟合优度决定系数达到0.997 860,拟合效果较好.

Abstract

Aimed at the problems that the network security situation prediction task is complex,and high in noise of data in real environments,a network security situation prediction method is proposed based on empirical mode decomposition(EMD)and improved temporal Transformer(ITTransformer).The com-plete EEMD with adaptive noise(CEEMDAN)method is utilized for de-noising and pre-processing net-work security situation data in real environments through"decomposition-reconstruction".The paper pro-poses ITTransformer.The Temporal Transformer module is used to extract the time-depth global features from the network security situation data sequences.An Attention Fusion mechanism is proposed to realize the adaptive fusion of temporal features to complete the prediction task in a more robust feature fusion way.The experimental results show that the method proposed in this paper is superior in prediction accu-racy to the other methods,and its coefficient of determination reaches 0.997 860,and the fitting efficiency is good.

关键词

网络安全态势预测/时间序列分解/Transformer/特征融合/注意力机制

Key words

network security situation prediction/time series decomposition/Transformer/feature fusion/attention mechanism

引用本文复制引用

出版年

2024
空军工程大学学报
空军工程大学科研部

空军工程大学学报

CSTPCD北大核心
影响因子:0.55
ISSN:2097-1915
段落导航相关论文