首页|改进卷积神经网络的冬小麦提取方法

改进卷积神经网络的冬小麦提取方法

扫码查看
为提高遥感影像冬小麦识别精度,通过对传统的卷积神经网络进行优化,设计实现一种改进的卷积神经网络Im-SegNet(Improved-SegNet).模型增加了冬小麦和非冬小麦概率向量差值信息,对于概率向量差值较小的像素进行了二次判断.以肥城市冬小麦生长期的77张GF-2(Gaofen2)影像作为实验数据,利用精度、准确率以及查全率3项指标对Im-SegNet模型提取效果进行验证评价.结果表明,提取精度为92.1%,准确率为91.8%,查全率为84.9%,3项指标均高于经典的SegNet模型提取结果,Im-SegNet模型可以有效改善遥感影像作物分类效果.
Winter Wheat Extraction Method Based on Improved Convolution Neural Network
In order to extract winter wheat from high-resolution images with high accuracy,the traditional convolutional neural network were improved,and the implemented neural network Im SegNet(Improved SegNet)is got.The model adds the difference information of the probability vectors of winter wheat and non-winter wheat,and makes a secondary judgment on the pixels with smaller difference of the probability vectors,which improves the extraction accuracy of the convolution neural network model.77 GF-2(Gaofen 2)images of winter wheat in Feicheng City,were collected and used as experimental data,and three indicators of accuracy,accuracy and recall aws used to verify and evaluate the extraction effect of Im-SegNet model.The accuracy of the extraction results of the Im-SegNet model is 92.1%,the accuracy rate is 91.8%,and the recall rate is 84.9%.The three indicators are higher than the extraction results of the classic SegNet model,indicating that the Im-SegNet model is more suitable for extracting the spatial distribution information of winter wheat from high-resolution images.

full convolutional neural networkremote sensing imagebayesianwinter wheat

崔兆韵、崔焕淼、宋德娟、李瑶瑶

展开 >

山东省气象防灾减灾重点实验室,济南 250031

泰安市生态与农业气象中心,山东泰安 271000

山东工程职业技术大学人工智能学院,济南 250200

临沂市河东区农业农村发展服务中心,山东临沂 276000

展开 >

全卷积神经网络 遥感影像 贝叶斯 冬小麦

科技创新2030-"新一代人工智能"重大项目山东省气象局引导类项目泰安市科技创新发展项目

2022ZD01195002021SDYD332020NS062

2024

科技和产业
中国技术经济学会

科技和产业

影响因子:0.361
ISSN:1671-1807
年,卷(期):2024.24(1)
  • 23