首页|基于前景理论和混合加权距离的区间值毕达哥拉斯模糊多属性决策

基于前景理论和混合加权距离的区间值毕达哥拉斯模糊多属性决策

扫码查看
针对现有的毕达哥拉斯模糊评价通常会忽视决策者的主观偏好和风险规避的问题,引入前景理论来反映决策者的主观感受,同时将毕达哥拉斯模糊数改进为区间值毕达哥拉斯模糊数,以避免决策者无法使用准确数值进行评价的情况,并引用基于均衡视角的权重修正系数,防止仅考虑决策者的主观偏好而造成的权重确定的偏差.在此基础上,将区间值毕达哥拉斯混合加权距离引入TOPSIS,以实现对多样性信息的有序集结.最后,通过实例分析和比较分析,对方法的有效性进行验证.
Interval Values Based on Foreground Theory and Mixed Weighted Distance Pythagorean Fuzzy Multi-attribute Decision-Making
In order to solve the problem that the subjective preference and risk aversion of decision-makers are often ignored in the existing Pythagorean fuzzy evaluation,a technique was presented.The prospect theory was introduced to reflect the subjective feelings of decision-makers,and at the same time the Pythagorean fuzzy number to the interval value Pythagorean fuzzy number was improved to avoid the situation that decision-makers cannot use accurate values for evaluation,and the weight correction coefficient based on the equilibrium perspective was used to prevent the bias of weight determination caused by only considering the subjective preference of decision-makers.On this basis,the interval value Pythagorean mixed weighted distance was introduced into the TOPSIS method to realize the orderly assembly of diversity information.Finally,the effectiveness of the method was verified through case analysis and comparative analysis.

the interval value Pythagorean fuzzy setprospect theorymixed weighted distance

何望琳、王琦峰、叶梦依

展开 >

浙江万里学院,浙江 宁波 315100

区间值毕达哥拉斯模糊集 前景理论 混合加权距离

2024

科技和产业
中国技术经济学会

科技和产业

影响因子:0.361
ISSN:1671-1807
年,卷(期):2024.24(6)
  • 16