首页|基于情感分类的《热辣滚烫》LDA主题挖掘

基于情感分类的《热辣滚烫》LDA主题挖掘

扫码查看
以豆瓣电影网关于电影《热辣滚烫》的用户评论为数据源,采用情感分类和LDA(Latent Dirichlet allocation)主题模型对影评进行深入分析.首先对影评数据进行预处理,包括去重、分词和构建去停用词表,匹配情感词表和修正情感倾向,将评论分为正面和负面两类.绘制正面和负面情感词云,揭示了观众对电影中女性力量的展现、励志元素的融入及幽默感表达等的正面评价,以及对剧情创新不足、营销宣传过度等负面反馈.LDA主题分析进一步识别"励志人生"和"重塑自我"作为正面主题,以及"过度营销"和"抄袭翻拍"作为负面主题.研究结果为电影制作提供了宝贵的观众洞察,建议制作团队在未来作品中注重剧情创新、真实营销、角色深度塑造和文化传播等,从而提升电影的艺术价值和市场竞争力.
"Hot and Hot"LDA Theme Mining Based on Emotional Classification
Taking user reviews from Douban Movie website regarding the film"Hot and Spicy"as the data source,sentiment classification and LDA(Latent Dirichlet Allocation)topic model was employed for an in-depth analysis of the movie reviews.Firstly,data was preprocessed,which included deduplication,word segmentation,construction of a stop word list,matching with a sentiment lexicon and correction of sentiment tendencies,categorizing the reviews into positive and negative sentiments.Mapping the positive and negative emotional word clouds reveals the audience's positive comments on the display of female power,the integration of inspirational elements,and the expression of humor in the film,as well as negative feedback on the lack of plot innovation and excessive marketing publicity.Further LDA topic analysis identifies"Inspirational Life"and"Self-Reconstruction"as positive themes,and"Over-Marketing"and"Plagiarism and Remakes"as negative themes.The results provide valuable audience insights for film production,suggestions are proposed that production teams should focus on plot innovation,authentic marketing,in-depth character portrayal,and cultural dissemination in future works to enhance the artistic value and market competitiveness of the film.

sentiment classificationtopic miningself-reconstruction

关瑞雪、关瑞勇

展开 >

石家庄铁道大学管理学院,石家庄 050000

河北农业大学文管学院,沧州 061000

情感分类 主题挖掘 重塑自我

2024

科技和产业
中国技术经济学会

科技和产业

影响因子:0.361
ISSN:1671-1807
年,卷(期):2024.24(16)