首页|中国科技创新效率及影响因素——基于DEA-Tobit模型

中国科技创新效率及影响因素——基于DEA-Tobit模型

扫码查看
基于2016-2021年全国省级面板数据,分别运用DEA(数据包络分析)和Malmquist模型对中国科技创新效率进行静态和动态测度,并运用Tobit模型分析影响创新效率的因素.结果表明:中国科技创新效率整体水平较低,6大行政区的科技创新效率值从高到低依次为东北区、西北区、华东区、西南区、中南区、华北区;中国科技创新Malmquist指数在2016-2021年整体处于增长状态,测度期内6大行政区的科技创新Malmquist指数平均值从高到低排序依次为华北区、中南区、西北区、华东区、西南区和东北区,仅东北区的科技创新全要素生产率处于衰退状态;政府扶持力度、技术市场的发育程度和对外开放程度与科技创新效率呈现正相关关系.
Scientific and Technological Innovation Efficiency and Influencing Factors in China:Based on DEA-Tobit Model
Based on national provincial panel data from 2016 to 2021,the DEA(data envelopment analysis)and Malmquist modelswere used to measure the static and dynamic efficiency of China's technological innovation,and the Tobit model was used to analyze the factors affecting innovation efficiency.The results show that the overall level of China's technological innovation efficiency is low.The efficiency values of the six administrative regions from high to low are:Northeast,Northwest,East China,Southwest China,Central South China,and North China.China's technological innovation Malmquist index as a whole has been in a growth state from 2016 to 2021.The average Malmquist index of the six administrative regions from high to low in the measurement period is:North China,Central South China,Northwest China,East China,Southwest China,and Northeast China.Only the Northeast District's technological innovation total factor productivity is in a state of decline.Government support,the degree of development of the technology market,and the level of openness are positively correlated with technological innovation efficiency.

technological innovation efficiencyinfluencing factorsDEA(data envelopment analysis)-Malmquist indexDEA(data envelopment analysis)-Tobit model

胡泽鲲、郭晓莉

展开 >

山西农业大学农业经济管理学院,山西晋中 030801

科技创新效率 影响因素 DEA(数据包络分析)-Malmquist指数 DEA(数据包络分析)-Tobit模型

2024

科技和产业
中国技术经济学会

科技和产业

影响因子:0.361
ISSN:1671-1807
年,卷(期):2024.24(23)