首页|DLRM深度学习模型在光伏发电量预测中的应用

DLRM深度学习模型在光伏发电量预测中的应用

扫码查看
光伏发电量预测值可以为有关部门进行电能调度或储备提供参考依据.而由于光伏发电具有间歇性、随机性和波动性等特征,对于光伏发电量的预测一直是一个难题.深度学习推荐模型(DLRM)输入层分别将连续特征和离散特征作为输入,采用不同的方法进行特征提取,之后在中间层学习特征之间的交互特征,使得特征表达更充分.而在光伏发电量预测模型的特征中,也存在相应的连续特征和离散特征,如太阳辐射量、温度、降雨量、湿度等是连续特征,而天气、季节、月份等是离散特征,并且有些特征的交互特征,如温度和天气、天气和季节等的交互特征对于预测光伏发电量具有实际的意义.基于此,借鉴了 DLRM的模型架构,将其从一个预测点击率的模型修改为一个预测连续值的模型,从而达到预测光伏发电量的目的.在实际数据上进行了验证,提出的模型能够很好地预测光伏发电量.
Application of DLRM Deep Learning Model in Photovoltaic Power Generation Prediction
The predicted value of photovoltaic power generation can serve as a reference for relevant departments to dispatch or reserve electricity.The prediction of photovoltaic power generation has always been a challenge,as photovoltaic power generation has characteristics such as intermittency,randomness,and volatility.The deep learning recommendation model(DLRM)input layer takes continuous features and discrete features as inputs,and uses different feature extraction methods for feature extraction,afterwards,learn the interaction features between features in the middle layer.In the characteristics of photovoltaic power generation prediction models,there are also corresponding continuous and discrete features,such as solar radiation,temperature,rainfall,humidity,etc.,which are continuous features,while weather,season,month,etc.are discrete features.Moreover,the interaction features of some features,such as temperature and weather,weather and season,have practical significance for predicting photovoltaic power generation.Based on this,the model architecture of DLRM was constructed and modified from a model for predicting click through rates to a model for predicting continuous values,in order to achieve the goal of predicting photovoltaic power generation.The model proposed has been validated on actual data and can effectively predict photovoltaic power generation.

DLRM(deep learning recommendation model)deep learningphotovoltaic power generationforecast

常伟、胡志超、潘多昭、师继文

展开 >

南通乐创新能源有限公司,上海 201102

DLRM(深度学习推荐模型) 深度学习 光伏发电量 预测

2024

科技和产业
中国技术经济学会

科技和产业

影响因子:0.361
ISSN:1671-1807
年,卷(期):2024.24(23)