首页|基于时序分解特征的水质溶解氧预测

基于时序分解特征的水质溶解氧预测

扫码查看
为提高水体生态系统的稳定性,提出一种基于变分模态分解(VMD)的水质溶解氧混合预测模型,利用VMD将溶解氧进行分解得到多个本征模态函数(IMFs),根据不同IMFs的特点,分别建立不同的模型.非线性序列部分使用主成分(PCA)和粒子群(PSO)优化最小二乘向量机(LSSVM)模型;线性序列部分使用差分整合移动平均自回归模型(ARIMA).将各部分预测结果结合起来,得到溶解氧的预测值.将本文模型运用于京杭大运河常州段某监测点进行验证,结果显示平均绝对误差为0.168、均方根误差为0.211、平均绝对百分率误差为4.576,混合预测模型具有较高的预测精度,能够满足现代化水质管理的高要求.
Prediction of Dissolved Oxygen in Water Quality Based on Time Series Decomposition Characteristics
In order to improve the stability of the water ecosystem,a mixed prediction model of dissolved oxygen based on variational mode decomposition(VMD)was proposed.Dissolved oxygen was decomposed by VMD to obtain multiple IMFs,and different models were established according to the characteristics of different IMFs.Principal component analysis(PCA)and particle swarm optimization(PSO)to optimize the least squares vector machine model(LSSVM)was uesed in the nonlinear sequence part autoregressive integrated moving average model(ARIMA)was used in the linear sequence part.The prediction results of dissolved oxygen were obtained by combining the prediction results of each part.The model in this paper was applied to a monitoring point in the Changzhou section of the Bei-jing-Hangzhou Grand Canal.The results show that the average absolute error is 0.168,the root mean square error is 0.211,and the average absolute percentage error is 4.576.The mixed model can predict dissolved oxygen well and has certain practical significance for the management of water quality environment.

water quality dissolved oxygen predictiontime series decompositionvariational mode decompositionleast square support vector machineautoregressive integrated moving average model

李慧

展开 >

常州大学外国语学院,江苏常州 213164

水质溶解氧预测 时序分解 变分模态分解 最小二乘支持向量机 差分整合移动平均自回归

2024

科技和产业
中国技术经济学会

科技和产业

影响因子:0.361
ISSN:1671-1807
年,卷(期):2024.24(24)