首页|基于改进CNN-BiLSTM模型和地磁监测数据的多时间长度GIC预测

基于改进CNN-BiLSTM模型和地磁监测数据的多时间长度GIC预测

扫码查看
太阳风暴在电力系统网络中驱动产生的GIC会影响电力设备和系统的安全运行,严重时还会引发大面积停电事件.预测电网GIC水平能够为电力系统保护措施提供重要参考,然而对这方面的研究仍显不足.为了解决该问题,将卷积神经网络(CNN)与双向长短时记忆(BiLSTM)以及注意力机制相结合,利用空间天气的相关监测信息,提出了大规模电网GIC多时间长度的预测方法.本文在分析太阳风暴驱动产生电网地磁感应电流(Geo-magnetically Induced Current,GIC)基础上,构建了GIC预测模型;提出了基于多头注意力机制的CNN-BiL-STM改进模型,对GIC进行预测,并给出了预测流程.采用CNN捕获地磁扰动局部信息,根据BiLSTM综合地磁暴扰动信息的全局特征,综合利用多头注意力机制评估对GIC关键作用的地磁信息片段,实现电网GIC的预测.利用 2004年 11月 8日 00:00 LT-20:00 LT巨型磁暴期间DED地磁台站和QGZH地磁台监测数据,应用所提方法对岭澳 500 kV变电站GIC进行回归预测.经过训练后,GIC预测相对误差均在 12%以内,精度高于其他模型的预测结果.
Multiscale GIC Prediction Based on Improved CNN-BiLSTM Model and Geomagnetic Monitoring Data
The GIC generated by solar storms driving in power system networks can affect the safe operation of power equipment and systems,and even lead to major power outages.Predicting the level of GIC in power grids can provide an important reference for power system protection measures,but re-search in this area continues to be insufficient.In order to solve this problem,a multi-scale GIC predic-tion method for large-scale power grids is proposed by combining Convolutional Neural Networks(CNN),Bidirectional Long and Short Term Memory(BiLSTM),and attention mechanisms,using rele-vant monitoring information of spatial weather.Firstly,based on the analysis of the mechanism of GIC generated by solar storms,a GIC prediction model is constructed;Secondly,a dual-channel GIC predic-tion architecture based on CNN-BiLSTM is proposed:first,local geomagnetic disturbance information is captured using CNN,then the global characteristics of geomagnetic storm disturbance information are synthesized using BiLSTM,and finally,the geomagnetic information fragments that play a key role in GIC are comprehensively evaluated using the multi-head attention mechanism,achieving the prediction of the power grid GIC.Using monitoring data of the DED geomagnetic station and the QGZH geomag-netic station during the giant magnetic storm from 00:00 LT-20:00 LT on 8 November 2004,the pro-posed method was applied to regression prediction of the GIC of the 500 kV Ling'Ao substation.After 220 rounds of training,the relative error of GIC prediction is within 12%,the accuracy is higher than the prediction results of other models.

Solar stormGIC predictionConvolutional Neural Networks(CNN)Geomagnetic data

蓝东亮、陈延云、吴影、赵淼、王亮、吴伟丽、黄冲

展开 >

中国大唐集团科学技术研究总院有限公司华东电力试验研究院 合肥 230088

安徽正广电电力技术有限公司 合肥 231299

西安科技大学电气与控制工程学院 西安 710054

太阳风暴 GIC预测 卷积神经网络 地磁数据

国家电网科技项目合肥市关键共性技术研发项目

SGXJCJ00KJJS21005822021GJ039

2024

空间科学学报
中国科学院空间科学与应用研究中心 中国空间科学学会

空间科学学报

CSTPCD北大核心
影响因子:0.328
ISSN:0254-6124
年,卷(期):2024.44(3)
  • 4