首页|基于GBR方法的Kp指数预报模型

基于GBR方法的Kp指数预报模型

扫码查看
地磁Kp指数是空间天气预警的重要指标,也是研究太阳风-磁层耦合的关键参数.采用梯度提升回归(GBR)算法和随机森林(RF)两种机器学习方法,构建了以太阳风、行星际磁场参数、历史Kp值和太阳黑子数据为输入的3 h地磁Kp指数预报模型.预报结果表明,两种方法均可提前1 h预报地磁Kp指数,预测结果与观测值之间的相关系数为0.90,其中GBR方法在均方根误差上表现出更好的效果,均方根误差为0.56.Kp指数预报模型在太阳活动周不同相位的预测结果存在差异,在活动周下降阶段模型预测结果与观测数据的相关系数更高.比较了不同地磁扰动下模型的预测情况,相比中等磁暴和超强磁暴,模型对强磁暴(6≤Kp<7)的预报准确度最高.
Kp Index Forecast Model Based on GBR Method
The solar wind transports solar activity energy to interplanetary space,causing changes in the spatial structure of the Earth's magnetosphere and causing disastrous space weather.The Kp index is an important indicator for space weather alerts and a key parameter for the coupling between solar wind and the magnetosphere.With the development of machine learning methods,more and more space weather forecasting works adopt this method.In this paper,two machine learning methods,Gradient Boosting Regression(GBR)algorithm and Random Forest(RF),are used to construct a 3-hour Kp in-dex prediction model with solar wind,interplanetary magnetic field parameters,historical Kp values and sunspot data as inputs.The forecast results show that our methods can predict the Kp index one hour in advance and the correlation coefficient is 0.90 between the Kp index of the optimal case recommended by the model and the actual value.The GBR model performs better,the root Mean Square Error(Erms)is 0.56,and the Prediction Efficiency(P)is 0.81.The Kp index prediction model shows varying perfor-mances in different solar cycle phases,with better result during the cycle descending phase.The high-speed solar wind drive dominates the magnetospheric dynamics,and the model with solar wind as the main input parameter in the cycle descending phase has a better prediction effect.The model prediction situations under different geomagnetic disturbances have been compared.Compared with moderate and super severe magnetic storms,the model has the highest prediction accuracy for severe magnetic storms(6≤ Kp<7).In this study,the results of different prediction models are compared and analyzed.The pre-diction model can not only provide early warning of severe space weather,but also better understand the relationship between geomagnetic index and solar wind input energy,which provides more methods and theoretical basis for the research work of solar wind-magnetosphere coupling.

Kp indexMachine learningSpace weather forecast

焦琦融、张典钧、刘文龙

展开 >

北京航空航天大学空间与环境学院 北京 102206

北京航空航天大学空间环境监测与信息处理工信部重点实验室 北京 102206

Kp指数 机器学习 空间天气预报

2024

空间科学学报
中国科学院空间科学与应用研究中心 中国空间科学学会

空间科学学报

CSTPCD北大核心
影响因子:0.328
ISSN:0254-6124
年,卷(期):2024.44(6)