首页|基于峰值特性判定模型更新的鲁棒视觉跟踪算法

基于峰值特性判定模型更新的鲁棒视觉跟踪算法

扫码查看
为解决传统的模型更新算法在视觉跟踪中出现遮挡、光照变化以及自身旋转等情况下存在的鲁棒性较差问题,提出一种利用峰值特性对模型进行选择性更新的鲁棒视觉跟踪算法.该算法首先通过粒子滤波跟踪确定目标位置,接着利用当前模型在当前帧跟踪的结果位置附近进行局部穷搜索,然后通过检测到的峰值分布确定目标置信度的数值矩阵,最后采用峰值旁瓣比阈值判断法确定是否更新当前模型.仿真结果表明:所提算法能够对目标模型进行有效更新,与对比算法比较,在应对视觉跟踪中常见的遮挡、光照变化以及自身旋转等情况时,总体上能够达到更好的跟踪效果.
Robust visual tracking algorithm based on peak characteristics to determine model updating
In order to solve the problem that the traditional model updating algorithm has poor robustness in the case of occlusion,illumination change and self-rotation in visual tracking,this paper proposes a robust visual tracking algorithm of using peak characteristics to selectively update the model.In this algorithm,the target posi-tion is first determined through particle filtering tracking,then the current model is used to conduct a local exhaus-tive search near the result location of the current frame tracking,and the detected peak distribution is also used to determine the numerical matrix of target confidence.Finally,the peak-to-sidelobe ratio threshold judgment meth-od is employed to decide whether or not to update the current model.Simulation results show that the proposed al-gorithm can effectively update the target model,and that compared with the contrast algorithm,it can achieve a better tracking effect on the whole in dealing with the situation of usual occlusion,illumination change,self-rota-tion,etc.in visual tracking.

visual trackingparticle filterpeak characteristicspeak-to-sidelobe ratiodegree of confidencerobust optimization

范舜奕、倪磊、刘斌斌、平宗伟、贾航川

展开 >

94028部队,陕西咸阳 712000

空军预警学院,武汉 430019

视觉跟踪 粒子滤波 峰值特性 峰值旁瓣比 置信度 鲁棒优化

国家自然科学基金空军预警学院"厚基工程"项目

62072370

2024

空天预警研究学报
空军预警学院

空天预警研究学报

影响因子:0.39
ISSN:2097-180X
年,卷(期):2024.38(1)
  • 19