首页|一种无人机路径规划强化学习算法

一种无人机路径规划强化学习算法

扫码查看
为了让无人机不易遭到地面埋伏的单兵防空武器打击,提出了一种新的强化学习算法,用于无人机(UAV)执行规避导弹、最短路径飞行和编队飞行任务.该算法结合自我模仿学习和随机网络提炼算法,以放大探索的模仿效应(AIE).实验结果表明,所提出的算法在寻找UAV最短飞行路径的同时避开敌方导弹方面非常有效;在收敛速度和学习稳定性方面都优于现有算法.这为UAV躲避导弹被击中的事件提供了一定的参考.
A reinforcement learning algorithm for combat UAV path planning
In order to make it uneasy for unmanned aerial vehicles(UAVs)to be attacked by the ground am-bush of individual anti-aircraft weapons,this paper proposes a new reinforcement learning algorithm used for com-bat UAVs to perform the mission of missile avoidance,shortest path flight and formation flight.The algorithm combines self-imitation learning and stochastic network refining algorithm to enhance exploration through amplifi-cation of imitation effect(AIE).Experimental results show that the proposed algorithm is very effective in finding the shortest flight path for the combat UAV while avoiding enemy missiles,and is also superior to the existing al-gorithm in terms of convergence speed and learning stability.This provides a certain reference for the UAVs to avoid being hit by missiles.

UAVreinforcement learningautonomous flight managementpath planning

陈孝如、潘正党、陈立军

展开 >

广州软件学院软件工程系,广州 510990

正阳县职业中等专业学校,河南驻马店 463699

无人机 强化学习 自主飞行管理 路径规划

2024

空天预警研究学报
空军预警学院

空天预警研究学报

影响因子:0.39
ISSN:2097-180X
年,卷(期):2024.38(2)
  • 14