首页|改进卷积神经网络的SAR图像识别方法

改进卷积神经网络的SAR图像识别方法

扫码查看
针对SAR图像存在散斑噪声且各个类别的区分度不高而导致的目标特征提取难的问题,提出了一种改进卷积神经网络的SAR图像识别方法.采用不同尺度的卷积层提取SAR图像特征,设计了一种多尺度特征提取模块,充分提取图像的隐含信息;对经典的残差神经网络残差块进行改进,设计了一种密集残差块结构,为后面层提供丰富的细节信息,保证输出特征的表达能力.最后在MSTAR数据集上进行了验证.实验结果表明,本文模型在测试集上的识别率达到了99.17%,优于其他方法.对测试集加入不同比例的椒盐噪声,本文模型比其他CNN识别率高,说明本文模型具有较好的鲁棒性.
SAR image recognition method of improved convolutional neural network
SAR images exist speckle noise and distinction between different image categories is poor,which makes it difficult to extract representative features.In order to solve this problem,an improved convolutional neu-ral network for SAR image recognition method is proposed.Firstly,a multi-scale feature extraction module is de-signed to fully extract the hidden information of SAR images by using convolution layers of different scales.Then,by improving classical residual neural network residual block,a dense residual block structure is designed to provide rich detailed information for the back layer and ensure the expression ability of output features.Finally,verification is performed on the MSTAR dataset.The experimental results show that the recognition rate of the proposed model on the test set is 99.17%,which is better than other methods.After salt-pepper noise of different proportions is added to the test set,the proposed model still shows good robustness.

convolutional neural networkSAR imagemulti-scale feature extraction moduledense residual blockrobustness

罗曼、李新

展开 >

湖北省电子信息产品质量监督检验院,武汉 430000

卷积神经网络 SAR图像 多尺度特征提取模块 密集残差块 鲁棒性

2024

空天预警研究学报
空军预警学院

空天预警研究学报

影响因子:0.39
ISSN:2097-180X
年,卷(期):2024.38(3)
  • 6