首页|基于YOLOv5的鹿食植物细胞识别方法

基于YOLOv5的鹿食植物细胞识别方法

扫码查看
黑龙江省大小兴安岭、老爷岭、完达山等林区分布着数量不等的马鹿群.为保护马鹿种群正常的生存繁衍,相关领域的工作人员付出了大量的心血.在原本YOLOv5模型中加入了注意力机制模块,并且使用了DIoU_Loss作为损失函数,从而提出了一种鹿食植物细胞识别方法.本方法可以将马鹿粪便中各类植物细胞特征提取出来,并通过建立神经网络模型,将输入的数据进行识别与分类,从而达到了快速分辨马鹿粪便样本中植物碎屑种类的目的.本方法可以帮助相关领域工作人员快速鉴定鹿食植物的种类、数量及成分组成,提高分析效率和鹿种群监测的准确率,为鹿种群监测提供一种新的手段和方法.
Recognition Methods of Deer-Eating Plant Cells Based on YOLOv5
There are different numbers of the herds of red deer in the forest areas of Daxing'an Mountains,Xiaox-ing'an Mountains,Laoye Mountains and Wanda Mountains in Heilongjiang Province.In order to protect the nor-mal survival and reproduction of the red deer population,staff in related fields have made a lot of efforts.This paper adds the attention mechanism module to the original YOLOv5 model,uses DIoU_Loss as a loss function,and then proposes a recognition method of deer-eating plant cells.This method can extract the characteristics of various plant cells in the faeces of red deer,and identify and classify the input data by establishing a neural network model,so as to achieve the purpose of quickly identifying the types of plant debris in the faeces samples of red deer.This method can help staff in relevant fields to quickly identify the species,quantity and composition of deer-eating plants,and improve analysis efficiency and the accuracy of deer population monitoring,so as to provide a new means and method for deer population monitoring.

YOLOv5Image recognitionArtificial intelligenceAttention mechanism

王鑫玉、王姝蒙、李文顺

展开 >

黑龙江八一农垦大学 黑龙江大庆 163319

YOLOv5 图像识别 人工智能 注意力机制

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(1)
  • 4