首页|基于深度学习的课堂教学行为评价方法

基于深度学习的课堂教学行为评价方法

扫码查看
课堂是教学活动的主阵地,是教学质量的基础.当前,职业教育的课堂教学评价存在模式陈旧、指标单一、数据匮乏和算法灵活性差等问题,深度学习技术应用为解决这些问题提供了可能.基于深度学习的课堂教学行为评价方法(Class Learning Evaluation Method,CLEM)的第一步是利用智能设备获取课堂教学行为的视频信息,第二步是对视频中教师和学生的表情、姿态、语音等进行检测与教学行为识别,最后以某高职院校课堂教学视频为例开展教学行为统计分析和实证研究.实验表明,CLEM方法能够快速、准确地识别师生教学行为和开展课堂教学评价.
A Class Learning Evaluation Method Based on Deep Learning
The class is the main battlefield of teaching and learing activities and the foundation of teaching and learning quality.At present,there are problems in the class learning evaluation of vocational education,such as out-dated models,single indicators,lacking data and poor algorithm flexibility,and the application of deep learning technology provides the possibility to solve these problems.This article proposes a class learning evaluation method(CLEM)based on deep learning.This method first obtains the video information of class teaching and learning ac-tivities through intelligent devices,and then detects the expression,posture and speech of teachers and students in videos and recognizes their teaching and learing activities,and finally takes class teaching and learning videos from a certain vocational college as an example to conduct statistical analysis and empirical research on teaching and learn-ing activities.The experiment shows that the CLEM based on deep learning can quickly and accurately identify the teaching and learning activities of teachers and students and conduct class learning evaluation.

Deep learningClassroom teaching and learning activityVocational educationBehavior recognition

陆燕

展开 >

湖南开放大学 湖南长沙 410004

深度学习 课堂教学行为 职业教育 行为识别

湖南职业学院教育教学改革研究项目湖南省职业院校教育教学改革研究项目

ZJGB2021189ZJBZ2021087

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(2)
  • 8