首页|基于Conv-Attention-MLP的新能源汽车电池异常检测方法

基于Conv-Attention-MLP的新能源汽车电池异常检测方法

扫码查看
在新能源汽车电池异常信号的检测方面,针对传统异常检测方法对多个维度电池数据检测精度低、泛化性差等问题,提出一种融合了卷积(Conv)、自注意力机制(Attention)和多层感知机(Multilayer Perceptron,MLP)的Conv-Attention-MLP深度神经网络方法.该方法首先对多个维度的时序数据使用特征卷积进行降维,再利用多头自注意力机制(MultiHead-Self-Attention,MSA)对数据的时间不同步以及数据逻辑之间的重建模,最后经过多层感知机(MLP)的连续线性映射与非线性运算,产生复杂的分段映射,以达到更好的拟合效果.实现了对多个维度电池数据的有效检测,提高了模型对于多样化数据的准确性和稳健性.实验结果表明:相较于传统异常检测方法,在vloongs数据集上Conv-Attention-MLP模型表现效果更加优越,展现出更高精度和更强的鲁棒性.
The Anomaly Detection Method for New Energy Vehicle Batteries Based on Conv-Attention-MLP
In terms of the detection of abnormal signals in new energy vehicle batteries,in order to solve the issues that traditional anomaly detection methods have low accuracy and poor generalization in the detection of multi-dimensional battery data,this paper proposes a Conv-Attention-MLP deep neural network method which inte-grates convolution(Conv),the self-attention mechanism(Attention)and the multilayer perceptron(MLP).The method first uses feature convolution to reduce the dimensionality of multidimensional time-series data,then uses the multihead self-attention(MSA)mechanism to recmodel the asynchrony of data time and the interrelationships among data logic,and finally uses the continuous linear mapping and non-linear operation of the multilayer percep-tron(MLP)to generate complex piecewise mapping,so as to achieve better fitting results,which realizes the effec-tive detection of multiple-dimensional battery data,and enhances the model's accuracy and robustness for diverse data.Experimental results demonstrate that compared to traditional anomaly detection methods,the the Conv-Attention-MLP model has better performance on the vloongs dataset,showcasing higher precision and stronger ro-bustness.

Deep learningAnomaly detectionSelf-attention mechanismModel merging

陈旭东、何宏、周焱平

展开 >

湖南工程学院计算机与通信学院 湖南湘潭 411104

深度学习 异常检测 自注意力机制 模型融合

国家级大学生创新创业训练计划

S202311342013

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(4)
  • 9