首页|基于机器学习的地铁隧道最大地表沉降预测方法

基于机器学习的地铁隧道最大地表沉降预测方法

扫码查看
研究地铁隧道施工引起的沉降一直是隧道研究中的热点问题.由于地层复杂性和施工参数多变性,用经验公式或者数值模拟预测隧道掘进引发的地面最大沉降难以兼顾易用性和准确性.近年来,随着机器学习理论的深入研究、计算机软硬件技术的快速发展、机器学习等新兴算法正在被越来越多地运用于预测地面最大沉降.通过采用两种机器学习算法(如随机森林和BP神经网络),以隧道几何参数、盾构机施工参数和地质参数作为输入,对隧道施工过程中引发的地面最大沉降进行预测分析.结果显示,两种机器学习算法均能实现较高质量的预测,并且随机森林模型的稳定性优于BP神经网络模型.
Prediction Methods for the Maximum Surface Settlement of Subway Tunnels Based on Machine Learning
It has always been a hot topic to study the settlement caused by subway tunnel construction in tunnel re-search.However,due to the complexity of the geological strata and the variability of construction parameters,it is difficult to balance ease of use and accuracy to predict the maximum ground settlement caused by tunneling by em-pirical formulas or numerical simulations.In recent years,with in-depth research on the machine learning theory and the rapid development of computer software and hardware technology,emerging algorithms such as machine learning are increasingly being applied to predict maximum ground subsidence.This article uses two machine learn-ing algorithms(the random forest and the BP neural network)to predict and analyze the maximum ground settle-ment caused by tunnel construction by taking the geometric parameters of the tunnel,the construction parameters of the shield machine and geological parameters as inputs.The results show that the two machine learning algo-rithms can both achieve higher-quality prediction,and that the stability of the random forest model is better than that of the BP neural network model.

Subway tunnelSettlement predictionMachine learningRandom forestBP neural network

徐勇斌、汪锋、施倩红

展开 >

杭州市建设工程质量安全监督总站 浙江杭州 310005

中国电建集团华东勘测设计研究院有限公司 浙江杭州 311122

地铁隧道 沉降预测 机器学习 随机森林 BP神经网络

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(4)
  • 19