首页|基于深度学习的转向间隙影响转角控制的优化方法研究

基于深度学习的转向间隙影响转角控制的优化方法研究

扫码查看
自研底盘的靶车受制造工艺影响,转向机构间隙不可避免,方向盘虚位过大,无法精确控制前轮按预期角度行驶,跟踪轨迹表征为"S"型.为了解决转向间隙对转向控制的影响,提出一种基于深度学习的优化转向间隙对转角控制影响的方法,结合回归思想选用三层神经网络作为载体,基于车辆二自由度模型进行理论计算.最终实车验证表明,经过深度学习优化后的控制参数,可有效减小转向间隙对转角控制的影响.
Research on the Optimization Method of the Effect of Steering Clearance on Steering Angle Control Based on Deep Learning
A target vehicle with a self-developed chassis is affected by the manufacturing process,the clearance of its steering mechanism is inevitable,the virtual position of its steering wheel is too large,making it impossible to ac-curately control front wheels to drive at the expected angle,and the tracking trajectory is characterized as an"S"shape.In order to address the impact of steering clearance on steering control,this paper proposes a method to opti-mize the impact of steering clearance on steering angle control based on deep learning,which selects a three-layer neural network as a carrier in combination with regression thinking,and carries out theoretical calculations based on the two degrees of freedom model of the vehicle.Finally,actual vehicle verification shows that the control param-eters optimized by deep learning can effectively reduce the impact of steering clearance on steering angle control.

Target vehicleSteering clearanceDeep learningNeural networkSteering angle control

崔国良

展开 >

安徽卡思普智能科技有限公司 安徽合肥 239000

靶车 转向间隙 深度学习 神经网络 转角控制

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(6)