首页|基于PYTHON的城市人为热通量与温度关系分析及风险评估

基于PYTHON的城市人为热通量与温度关系分析及风险评估

扫码查看
针对全球城市热岛效应日趋严重而复杂形势,提出了一种运用SUEWS模型和Python进行数据分析的方法,探讨人为热通量影响城市热岛效应的重要性与形成机理,重点分析温度变化对制冷度日和人为热通量的影响程度.通过对城市气候大数据的分析研究,发现制冷度日和人为热通量之间存在一定相关性,人为热通量与温度变化之间有敏感响应关系;最后提出相应建议和措施.
Analysis and Risk Assessment of the Relationship Between Urban Anthropogenic Heat Flux and Temperature Based on PYTHON
This article proposes a data analysis method by the SUEWS model and Python to address the increas-ingly severe and complex situation of the global urban heat-island effect to explore the importance and formation mechanism of the effect of anthropogenic heat flux on the urban heat-island effect,with a focus on analyzing the impact of temperature changes on cooling degree days and anthropogenic heat flux.Through the analysis and re-search of the big data of urban climate,it is found that there is a certain correlation between cooling degree days and anthropogenic heat flux,and that there is a sensitive response relationship between anthropogenic heat flux and temperature changes.Finally,corresponding suggestions and measures are proposed.

Urban heat-island effectAnthropogenic heat fluxTemperature sensitivityCooling degree days

龚泽瀚

展开 >

伦敦大学学院数学与物理学院 英国伦敦 WC1E 6BT UK

城市热岛效应 人为热通量 温度敏感性 制冷度日

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(6)