首页|基于GM-RBF组合模型的BDS-3卫星钟差短期预报

基于GM-RBF组合模型的BDS-3卫星钟差短期预报

扫码查看
针对卫星钟差具有趋势项和随机项变化的特征问题,提出了GM-RBF组合模型的方法。该模型首先用GM(1,1)提取预处理后的卫星钟差趋势项部分并进行建模预报,得到相应的残差序列,通过RBF神经网络训练用灰色模型预报所获得的残差序列,然后将GM(1,1)模型的钟差后续预报值与RBF神经网络的残差预报值对应相加可得组合模型的预报结果。为验证组合模型的有效性和可行性,将组合模型预报结果与GM(1,1)模型、ARIMA模型、RBF神经网络模型预报结果进行对比实验。实验结果表明:组合模型预报精度要高于其他单一模型,其在不同时段的平均预报精度可提高46。4%~86。2%。
Short-Term Prediction of BDS-3 Satellite Clock Errors Based on the GM-RBF Combined Model
In order to address the eigenproblem of the change of the trend term and random term of the satellite clock error,this paper proposes a method of the GM-RBF combined model.First,this model uses GM(1,1)to extract the pre-processed trend term of the satellite clock error,conducts modeling and forecasting to obtain the corresponding residual sequence,and uses the grey model to predict the obtained residual sequence by RBF neural network training.Then,the prediction result of the combined model can be obtained by adding the subsequent prediction value of the clock error of the GM(1,1)model and the residual prediction value of the RBF neural network.In order to verify the validity and feasibility of the combined model,the prediction results of the combined model are compared with those of the GM(1,1)model,the ARIMA model and the RBF neural network model.Experimental results show that the forecast accuracy of the combined model is higher than that of other single models,and that its average forecast accuracy can be increased by 46.4%~86.2%in different periods.

BDS satellite clock errorGrey modelRBF neural networkCombination modelClock error forecast

唐彦、李豫、李特

展开 >

新疆工程学院 新疆乌鲁木齐 830000

营口创学教育 辽宁营口 115000

黑龙江工程学院 黑龙江哈尔滨 150000

BDS卫星钟差 灰色模型 RBF神经网络 组合模型 钟差预报

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(7)