科技资讯2024,Vol.22Issue(8) :215-219.DOI:10.16661/j.cnki.1672-3791.2401-5042-5263

基于人工智能技术的课堂教学质量评价研究

Research on Classroom Teaching Quality Evaluation Based on Artificial Intelligence Technology

张小恒 龚猷龙
科技资讯2024,Vol.22Issue(8) :215-219.DOI:10.16661/j.cnki.1672-3791.2401-5042-5263

基于人工智能技术的课堂教学质量评价研究

Research on Classroom Teaching Quality Evaluation Based on Artificial Intelligence Technology

张小恒 1龚猷龙1
扫码查看

作者信息

  • 1. 重庆工商职业学院 重庆 400052
  • 折叠

摘要

在评估教学效果与提高教学质量方面,对课堂教学质量进行科学有效评价具有极其重要的意义.传统评价方法存在问卷打分评价主观性强、评教自然语言信息难以充分利用、客观查课数据指标难以充分挖掘3个方面问题.对此提出了基于深度学习和机器学习的人工智能技术对课堂教学质量进行有效评价.一方面,深度学习可以将大量难以处理的自然语言评教信息进行有效识别并转化成量化指标;另一方面,机器学习技术可以对大量客观数据建立人工智能模型,从而解决量化评价问题.此方法在教学评价实践应用中得到验证,结果表明其具有可行性与有效性.

Abstract

The scientific and effective evaluation of classroom teaching quality is of great significance for assessing teaching outcomes and improving teaching quality.Traditional evaluation methods face three problems:the strong subjectivity of questionnaire scoring evaluation,difficulties in fully leveraging the natural language information of teaching assessment,and difficulties in full mining the objective data indicators of course inspection.This paper pro-poses artificial intelligence technology based on deep learning and machine learning to effectively evaluate classroom teaching quality.On one hand,deep learning can effectively identify a large amount of the hard natural language in-formation of teaching assessment and transform it into quantifiable indicators.On the other hand,machine learning technology can establish the artificial intelligence model of a large amount of objective data,so as as address the problem of quantitative evaluation.Finally,the method is validated in the practical application of educational evalua-tion,and results demonstrate its feasibility and effectiveness.

关键词

教学质量评价/人工智能/深度学习/机器学习

Key words

Teaching quality evaluation/Artificial intelligence/Deep learning/Machine learning

引用本文复制引用

基金项目

重庆市职业教育教学改革研究项目(GZ223149)

出版年

2024
科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
参考文献量11
段落导航相关论文