科技资讯2024,Vol.22Issue(10) :253-256.DOI:10.16661/j.cnki.1672-3791.2401-5042-0525

灰狼算法优化BP神经网络的股价预测

Stock Price Prediction of the BP Neural Network Optimzed by the Grey Wolf Optimizer

向朝菊
科技资讯2024,Vol.22Issue(10) :253-256.DOI:10.16661/j.cnki.1672-3791.2401-5042-0525

灰狼算法优化BP神经网络的股价预测

Stock Price Prediction of the BP Neural Network Optimzed by the Grey Wolf Optimizer

向朝菊1
扫码查看

作者信息

  • 1. 贵州财经大学 贵州贵阳 550025
  • 折叠

摘要

探讨使用灰狼算法改进BP神经网络的方法,旨在提高BP神经网络的训练效果和性能.首先,介绍了BP神经网络的基本原理和灰狼算法的基本概念.然后,将灰狼算法应用于BP神经网络的权重和偏置值的优化过程中,通过调整这些参数来降低误差函数,从而提高网络的准确性和收敛速度.实验结果表明:灰狼算法优化的BP神经网络具有较好的性能和泛化能力.其次,还用股票数据进行了实证分析,该模型在股票价格预测方面具有较高的准确性和稳定性,可为投资者提供有效的决策参考.最后,总结了本研究的贡献和未来的研究方向.

Abstract

The method of improving the BP neural network by the grey wolf optimizer is discussed,in order to im-prove the training effect and performance of the BP neural network.Firstly,the basic principle of the BP neural net-work and the basic concept of the grey Wolf optimizer are introduced.Then,the grey wolf optimizer is applied to the process of optimizing the weight and bias value of the BP neural network,and the error function is reduced by adjusting these parameters,so as to improve the accuracy and convergence speed of the network.Experimental re-sults show that the BP neural network optimized by the grey wolf optimizer has good performance and generaliza-tion ability.Next,empirical analysis is carried out with stock data,showing that the model has high accuracy and stability in stock price prediction and can provide effective reference for investors to make decisions.Finally,the contribution of this study and the future research direction are summarized.

关键词

灰狼算法/BP神经网络/参数优化/股价预测

Key words

Gray wolf optimizer/BP neural network/Parameter optimization/Stock price prediction

引用本文复制引用

出版年

2024
科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
参考文献量6
段落导航相关论文