首页|矿工安全设备检测算法研究

矿工安全设备检测算法研究

Research on the Detection Algorithm of Safety Equipment for Miners

扫码查看
随着信息化技术的飞速发展,煤矿安全生产得到了明显改善,各类井下安全系统对煤矿的安全工作发挥了重要作用.基于计算机视觉技术,利用现有的监控设备或通过在井下施工现场布设新的设备,采用机器学习的相关方法进行矿工安全帽佩戴情况的自动识别,具体实现了对作业人员安全帽佩戴情况的快速监测,降低监管危险,增强工人的防范意识的同时提升了监管信息化水平.
With the rapid development of information technology,the safety production of coal mines has been sig-nificantly improved,and various downhole safety systems have played an important role in the safety work of coal mines.Based on computer vision technology,by existing monitoring equipment or through the deployment of new equipment at the downhole construction site,this paper adopts the relevant methods of machine learning to auto-matically identify the wearing of safety helmets for miners,which realizes the rapid monitoring of the wearing of safety helmets for operators,reduces supervision risks,enhances the prevention awareness of workers and improves the informatization level of supervision.

Miner's safety helmetDeep learningConvolutional neural networkYOLOv5

刘婷、卢杰、田琪、焦中、张林峰

展开 >

太原工业学院理学系 山西太原 030008

矿工安全帽 深度学习 卷积神经网络 YOLOv5

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(11)
  • 4