首页|基于深度学习的光伏发电技术研究

基于深度学习的光伏发电技术研究

扫码查看
为了提高光伏发电系统运行效率,以阐述光伏发电技术概述为基础,分析光伏发电技术运行原理,明确其主要特征,为研究人员收集光伏发电系统运行数据打下坚实的基础.同时,进行光伏阵列污染图像分类模型仿真分析,通过建立光伏阵列污染图像分类模型,科学预测未来的天气条件,并根据预测结果调整光伏发电系统的工作状态,以提高其运行效率.实验结果表明:光伏阵列污染图像分类模型具有较高的准确性和可靠性;与传统方法相比,该模型在发电量预测方面具有良好的表现,能适应不同的天气条件和环境变化.未来,将进一步完善该模型,并探索其他深度学习算法的应用,进一步提高光伏发电系统的运行效率.
Research on Photovoltaic Power Generation Technology Based on Deep Learning
In order to improve the operation efficiency of photovoltaic power generation system,based on the overview of photovoltaic power generation technology,this article analyzes the operating principle of photovoltaic power generation technology,and clarifies its main characteristics,which lays a solid foundation for researchers to collect the operation data of the photovoltaic power generation system.At the same time,the image Classification model of photovoltaic array pollution is simulated and analyzed,and the Image Classification model of photovoltaic array pollution is established to scientifically predict the future weather conditions,and the working state of the pho-tovoltaic power generation system is adjusted according to the prediction results,in order to improve its operation stability.The experimental results show that the photovoltaic array pollution Image Classification model has high ac-curacy and reliability.Compared with traditional methods,it has good performance in power generation prediction and can adapt to different weather conditions and environmental changes.In the future,the model will be further improved and other applications of Deep Learning Algorithms will be explored to further improve the operation ef-ficiency of the photovoltaic power generation system.

Deep LearningPhotovoltaicsPhotovoltaic array pollution imageImage data preprocessing

张词秀

展开 >

宁夏大学新华学院 宁夏银川 750021

深度学习 光伏发电 光伏阵列污染图像 图像数据预处理

宁夏大学新华学院科研项目

22XHKY05

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(15)