首页|基于深度学习的CAD表格识别算法设计

基于深度学习的CAD表格识别算法设计

扫码查看
随着工程和设计行业的快速发展,计算机辅助设计(Computer-Aided Design,CAD)软件在生产设计图纸方面发挥着不可或缺的作用.然而,传统的CAD在表格数据管理和提取方面存在局限性,尤其是在处理大规模的工程图纸中的表格数据时.为了解决这一问题,提出了一种新的自动化方法来提取CAD图纸中的大型表格数据.通过将原始CAD文件转换为图像格式,并应用先进的图像处理技术和深度学习模型(SAHI算法和Cycle-CenterNet模型),能够有效地提高表格数据的识别准确率和处理效率.实验结果显示,对比直接提取表格数据,使用该方法能显著提高数据提取的精确度、召回率和F1分数,验证了其在自动化提取大型CAD表格数据方面的有效性.未来的工作将集中在优化模型架构和提升其在不同类型图纸中的通用性和效果.
Design of CAD Table Recognition Algorithm Based on Deep Learning
With the rapid development of the engineering and design industries,Computer-Aided Design(CAD)play an indispensable role in producing design drawings.However,traditional CAD systems have limitations in managing and extracting tabular data,especially when dealing with large-scale engineering drawings.To address this issue,this paper introduces a new automated method for extracting large table data from CAD drawings.By converting original CAD files into image formats and applying advanced image processing techniques along with Deep Learning model(SAHI algorithm and Cycle-CenterNet model),this method can effectively improve the ac-curacy and efficiency of table data recognition and processing.Experimental results show that,compared to direct extraction of table data,using this method significantly enhances the precision,recall,and F1 score of data extrac-tion.Future work will focus on optimizing the model architecture and enhancing its applicability and performance across various types of drawings.

Computer-aided designTable detectionTable structure recognitionTable information extractionTable segmentationImage processingDeep LearningConvolutional network

方靖宇、韩文涛、应成才、何天祥、徐瑞吉、毛科技

展开 >

国网浙江省电力有限公司建设分公司

浙江华云信息科技有限公司

浙江工业大学 浙江杭州 310000

计算机辅助设计 表格检测 表格结构识别 表格信息提取 表格分割 图像处理 深度学习

2024

科技资讯
北京国际科技服务中心 北京合作创新国际科技服务中心

科技资讯

影响因子:0.51
ISSN:1672-3791
年,卷(期):2024.22(16)